UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering
Spring Semester 2021 Structural Engineering, Mechanics and Materials

Name:

MS Comprehensive Examination — Dynamics

Note: Two pages of useful formulas follow this page.

Question 1 (40% weight)

A small one-story reinforced-concrete (£ = 20 GPa) building is idealized as a massless frame

supporting a 4,000 kg mass at the beam level. Each 25-cm-square column is hinged at the base.

Assume that all members are inextensible, and the beam is rigid in flexure. Using the design

spectrum shown (5% damping), but scaled to 0.25g PGA,

a) Determine the peak displacement of the structure at the beam level.

b) Draw the bending moment and shear diagrams corresponding to the displacement in a),
assuming the structure sways to the right. Consider only earthquake loading, not gravity.
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Question 2 (60% weight) Natural vibration period 7}, sec

Consider the inverted L-shape structure shown to the right. All members can be considered
axially inextensible. For the degrees of freedom shown in the figure, the stiffness matrix is:

K= 48 18| EI h ,
-8 12 |7
. . . . e o~ DOF |
a) Determine the matrix equation of motion for the system
that is subjected to horizontal ground acceleration i, .
b) Compute the natural frequencies and mode shapes of the
structure. Normalize the modes so that ¢, =1. h DOF 2

¢) In the expression M,(t)= M} 4 (¢)+M;54,(t) that «— []
gives the moment at the base of the structure in terms of
the modal pseudo-accelerations Ai(f) and A2(?), TTTTITTITTT?

determine M} and M}},. .
g (1)

massless




CE225: PARTT, SDF SYSTEMS

Basic Definitions and Equations
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Vibration Generator:  p(t) = (m,ew”)sin et
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Equivalent Viscous Damping
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Arbitrary Excitation mii+cu+iu=p (t)
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Response to Step Force, ¢ =0
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For One Story Structure
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Stiffness Coefficients for a Flexural Element
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EQ Reponse of Inelastic Systems mii + i + /, (u,1) = pp (1) =—mii, (1)
Normalized Yield Strength
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fo u
fy and uy are yield strength and yield deformation
faand u, are peak force and deformation in corvesponding finear
system
Yield Strength Reduction Factor
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fo is minimum sirength required for structure to remain elastic
Ductility Factor

My

My

uy, is peak deformation of elastoplastic system
Response Spectrum for Inelastic Systems
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Generalized SDOF Systems: Distributed Mass and
Elasticity
For Assumed Shape Function p(x)
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At Height x Above the Base
#,(x) = Dy (x) fi{x)= Im(x)p(x)A
Static Analysis of the tower due to f, ( x) provides interal forces.
Base Shear and Moment:
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L
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Equation of Motion, MDOF mii-+eitku=p(t)

Earthquake Excitation
P(£)=pg (t)=—mrii, (1)

where 1= influence vector

Static Condesation
u, = translational DOF u, = rotational DOF
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Natural Frequencies and Modes
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University of California, Berkeley Structural Engineering, Mechanics & Materials
Civil and Environmental Engineering Spring Semester, 2020

Comprehensive Examination - Dynamics

Problem 1 (50% weight)

A single-degree-of-freedom oscillator has a mass of 100 1b, a natural period of 0.5 seconds, and a
fraction of critical damping of 5%. The oscillator is subjected to a harmonic ground motion with an
amplitude of 0.1g and a frequency of 4 Hz.

Determine the maximum total displacement of the mass.

Problem 2 (50% weight)

Figure 1 shows a one-story portal frame. Assume the floor remains horizontal during motion. The
floor weight is W = 80 kips. The columns have a height of 4 = 12 ft and a flexural rigidity of E/ =2
x 10% Ib-ft>. Assume that { = 5%, the force-deformation relation is elastoplastic, the design
earthquake has a peak ground acceleration of 0.6g, and the elastic design spectrum in Fig. 6.9.5
applies (after scaling to the correct PGA).

Determine the lateral force for which the frame should be designed if:

(a) the system is required to remain elastic
(b) the allowable ductility factor is 4.
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Figure 6.9.5 Elastic pseudo-acceleration design spectrum (84.1th percentile) for ground
motions with iigo = lg, tigo = 48 in./sec, and ugp = 36 in.; ¢ = 5%.



Name:

University of California, Berkeley Structural Engineering, Mechanics & Materials
Civil and Environmental Engineering Spring Semester, 2019

Comprehensive Examination - Dynamics

Problem 1 (30% weight)

Consider an industrial machine that weighs 1000 Ibs and is supported on spring-type isolators of
total stiffness £ = 3000 Ib/ft. The machine operates at a frequency of /= 2 Hz with a force unbalance
of po = 100 Ibs. Assume 5% damping.

(a) Determine the maximum displacement of the machine (from the at rest position) during steady
state oscillation.

Problem 2 (30% weight)
The elevated water tank of Figure 1a weighs 90 kips. The tower has a lateral stiffness of 10 kips/in,
and is subjected to the time-varying force p(z) shown in Figure 1b. Assume zero damping and that
the tower is at rest at time ¢ = 0. Treating the water tower as an SDOF system, determine:

(a) the equation that describes the dynamic response u(?) for 0 < ¢ <4 seconds.

(b) the equation that describes the dynamic response u(z) for ¢ > 4 seconds.
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University of California, Berkeley Structural Engineering, Mechanics & Materials
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Problem 3 (40% weight)

Figure 2 shows a two-storey sway-frame. Assume the floors remain horizontal during motion. The weight of
each storey is W = 100 kips. All columns have a height of # = 12 ft and a flexural rigidity of EI = 5 x 10° Ib-
ft>.

(a) Assuming zero damping, write the equation of motion.

(b) Assuming zero damping, the natural vibration periods are 2.15 seconds and 0.82 seconds. Determine the
mode shapes.

(c) Assuming 2% damping, use the response spectra in Figure 3 to estimate the maximum acceleration of the
top storey.
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