
Mathematics
PhD Prelim Exam Spring 2020

1. (30pts) Consider the following linear system ẋ = Ax, where

A =

2

4
3 �3 0
3 3 0
0 0 �4

3

5 .

Determine x(t) when

x(0) =

0

@
1
2
1

1

A ;

please express your final answer entirely in terms of real-valued quantities to facilitate
its interpretation.

2. (50pts) Consider a rectangular membrane, occupying the region 0  x  4 and
0  y  6, whose deflection is governed by

ü = c2r2u .

The membrane is fixed on its perimeter. Using separation of variables, determine the
frequency of the second natural mode of vibration. Assume c = 1/⇡.

3. (20 pts) Evaluate the surface integral

I =

Z

S
(x1n1 + 8.0x2n2 + 11.0x3n3) dA ,

where S = C [D consisting of the cylinder

C = {(x1, x2, x3) | (x1)
2 + (x2)

2 = a2 and 0  x3  b)}

and the circular disks

D =
�
(x1, x2, x3) | (x1)

2 + (x2)
2  a2 and x3 2 {0, b}

 
.

Note a and b are given constants, and n is the outward unit normal to the enclosed
volume.
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Problem 1 (50 points)
Considering an exponential distribution (function) model,

f(t) =
1

�
exp(�t/�),

with an unknown parameter �.
We have collected a set of data {ti}10i=1 in measurements that satisfy the distribution function

model with the unknown parameter,

{ti}10i=1 = {1.2, 3.0, 6.3, 10.1, 5.2, 2.4, 7.1, 6.9, 4.2, 3.8} .

To quantify the unknown parameter � with the data, we require that the unknown parameter
� making the following objective function maximum, i.e. there exists a parameter �̂ such that it
makes logL(�̂) = max�2IR(logL(�)), where

L(�) = ⇧10
i=1

1

�
exp(�ti/�) =

1

�
exp(�t1/�) ·

1

�
exp(�t2/�) · · · · ·

1

�
exp(�t10/�) .

This is usually expressed as

�̂ = arg max�2IR log(L(�)) .

(a) Find �̂ ?
(b) How do I know that �̂ maximizes logL(�) ?

Problem 2 (50 points)
Consider the following 3⇥ 3 matrix,

A =

2

4
0 1 0
1 0 1
0 1 0

3

5

(1) Find all the eigenvalues of the matrix [A];
(2) Find all the corresponding eigenvectors ;
(3) Find the eigenvalues of the matrix B = A3.
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Problem 1. (60 Points)

Consider the following cubic polynomial interpolation function for a beam element,

v(⇠) = c0 + c1⇠ + c2⇠
2
+ c3⇠

3
, 8 ⇠ 2 (0, L)

and let that

v(⇠) = N1(⇠)v0 +N2(⇠)✓0 +N3(⇠)vL +N4(⇠)✓L =

4X

I=1

NI(⇠)uI

where ⇠ 2 (0, L), and u1 = v0;u2 = ✓0;u3 = vL, and u4 = ✓L.

Thus, we have

v(0) = c0

✓(0) = c1

v(L) = c0 + c1L+ c2L
2
+ c3L

3

✓(L) = c1 + 2c2L+ 3c3L
2

Find c0, c1, c2 and c3 by solving the following equation,

2

6664

1 0 0 0

0 1 0 0

1 L L
2

L
3

0 1 2L 3L
2

3

7775

2

6664

c0

c1

c2

c3

3

7775 =

2

6664

v(0)

✓(0)

v(L)

✓(L)

3

7775

and identify

N1(⇠), N2(⇠), N3(⇠), and N4(⇠) .
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Problem 2. (40 Points)

Let

H1(⇠) =

⇣
1� 3

⇣
⇠

L

⌘2
+ 2

⇣
⇠

L

⌘3⌘
and

H2(⇠) = ⇠

⇣
1� ⇠

L

⌘2
.

Calculate the following elements of sti↵ness:

[Kij ] =

Z
L

0
H

00
i (⇠)EIH

00
j (⇠)d⇠ , i, j = 1, 2

where EI are constant, and H
00
i
(⇠) :=

d
2
Hi

d⇠2
, i = 1, 2.
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Problem 1. (40 points)

Define

G(t) =

Z 1

0

⇣Z tp
⌫

p
u

�1

(1/2)⌫/2p
2⇡�(⌫/2)

u⌫/2�1 exp(�z2 + u

2
)dz

⌘
du (1)

where ⌫ is a constant, and �(⌫/2) is Gamma function, which you do not need to evaluate. Just leave
it there.

Calculate or find the expression for

g(t) =
dG(t)

dt
?

Hint: Apply the fundamental theorem of calculus and chain rule. You do not need to integrate u.

Problem 2 (60 points)

Consider a smooth function f(x) � 0, and

df

dx
= � f2(x)

1� F (x)
=: f 0(x)

where 1 � F (x) =
R x
�1 f(t)dt > 0 or F 0(x) =

dF

dx
= f(x).

(1) Calculate f 00(x), f 000(x) · · · and verify that

dkf

dxk
(x) = (�1)k

fk+1(x)

(1� F (x))k
, k = 1, 2, · · ·

i.e. assume that
dkf

dxk
(x) = (�1)k

fk+1(x)

(1� F (x))k
, k = 1, 2, · · ·

show that
dk+1f

dxk+1
(x) = (�1)k

fk+2(x)

(1� F (x))k+1
, k = 1, 2, · · ·
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(2) Let
Fn(x) := [F (x)]n , n = 1, 2, · · ·

Find

fn(x) :=
dFn

dx
=?

and show that

f 0
n(x) =

d2Fn

dx2
= nf 0(x)[F (x)]n�1 + n(n� 1)f2(x)[F (x)]n�2

(3) Assume that at x = xn, f 0
n(xn) = 0, find

F (xn) = ?

(4) Assume that
f(xn)

(1� F (xn)
= ↵n = const. ! Find f(xn) ?

(5) Consider the Taylor series expansion of F (x) at x = xn, i.e.

F (x) = F (xn) + F 0(x)(x� xn) +
1

2!
F 00(xn)(x� xn)

2 +
1

3!
F 000(xn)(x� xn)

3 + · · ·

Show that

F (x) = 1� 1

n

h
1� ↵n(x� xn)

1!
+

↵2
n(x� xn)2

2!
� ↵3

n(x� xn)3

3!
+ · · ·

i

and subsequently

F (x) = 1� 1

n
exp(�↵n(x� xn)) .
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Problem 1. (40 points)

Define an average operator in R as

< f > (x) :=

Z 1

�1
f(y) exp(�a(x� y)2)dy, where |f(y)| < c, 8y 2 R

where a > 0 and 0 < c < 1 are real numbers.

Show that
d

dx
< f > (x) =<

df

dy
> . (1)

Problem 2. (40 points)

Consider the following di↵erential equation,

EI
d4v

dx4
= q(x), 8 0 < x < L (2)

where g(x) is a given function, and the di↵erential equation has the following boundary conditions:

v(0) = 0, v0(0) = 0, EIv00(L) = M̄, EIv000(L) = V̄

Consider a given function w(x) with the boundary conditions

w(0) = 0, w0
(0) = 0 , w(L) = 1, w0

(L) = �1.

Evaluate the following definite integral,

Z L

0
EIv00(x)w00

(x)dx =?

where v0 = dv
dx , v00 = d2v

dx2 and v000 = d3v
dx3 .

Problem 3. (20 points)

Consider the following algebraic equation,


1

x

�
=


1 1

x1 x2

� 
N1(x)
N2(x)

�

where N1(x) and N2(x) are unknown functions, and x1, x2 are two given points in the real number

axis R. Find N1(x) and N2(x) ?
Under which condition, N1(x) and N2(x) do not exit.
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