Mathematics

Problem 1 (30 Points)

Consider a 4 x 4 matrix defined in the following,

0 Inz 0 Inx
0O 0 1 0
A= ,
zr 0 0 O
0 0 2
where x > 0. Let matrix B be defined as
B — 42021
Find
a det(B)
dz ’

Hint: for square matrices C' and D of equal size, the determinant of their matrix product equals the product
of their determinants, i.e., det(C'D) = det(C) det(D).

Problem 2 (40 Points)

Consider a n-dimensional vector @ = [21, ..., z,]. Vector @ is a “probability vector” such that Y ;" ; x; =1,

and Vi, i =1,...,n, x; > 0. Define the entropy as
H(x) = —in Inz;,
i=1

where by definition 01ln0 = 0.
(a) Find the vector z* that maximizes the entropy.

(b) Solve question (a) again, subjected to an additional linear constraint: y ., ¢;z; = E, ¢; > 0, where ¢;

and E are fixed/known.

Note: i) You do not need to know anything about the theory of probability to solve this problem; ii) For

question (b) you do not need to find the analytical solution of z*.

Problem 3 (30 Points)

A popular model for the growth of a population is written in the following form

dN N
AN (1-22
aw (1-%

N(0)=Ny,Ng >0
dt )a() 0,40 = Y,

where A > 0 is the intrinsic growth rate of the population, and K, K > Ny, is the carrying capacity of the

environment. Solve this equation, and make a qualitative plot of N(t).
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1. (30pts) Consider an initial value problem governed by the ordinary differential equa-
tion
= 55+ 6y =

with initial conditions y(0) = 1, y(0) = 1. Solve for y(t).

2. (40 pts) Consider a partial differential equation for y(x,t)

oy _10%
or2 )\ Ot?
where z € [0,1], t € [0,00), and A\, I > 0 are given. Find y(z,t) assuming that
y(x,t)|t=0 = 0, and
2hz <1/2
y(@,0) { 2h — e g /2,
where h > 0 is given.

3. (30pts) Consider three vectors a, b, c € R*, where

a=(1,2,0,3)"
b=(0,1,2,3)"
c=(1,1,2,2)".
Find an orthonormal basis for
span{a, b, c}

using the Gram-Schmidt method.
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1. (30pts) Consider the following linear system & = Ax, where

3 =3 0
A=1]13 3 0
0 0 —4
Determine @(t) when
1
z(0)=1| 2 |;
1

please express your final answer entirely in terms of real-valued quantities to facilitate
its interpretation.

2. (50pts) Consider a rectangular membrane, occupying the region 0 < z < 4 and
0 <y < 6, whose deflection is governed by

i =V,

The membrane is fixed on its perimeter. Using separation of variables, determine the
frequency of the second natural mode of vibration. Assume ¢ = 1/7.

3. (20 pts) Evaluate the surface integral
I = / (x1n1 + 8.0z9n9 + 11.023n3) dA
S
where § = C U D consisting of the cylinder
C = {(z1, 20, 23) | (1)* + (22)*> = a* and 0 < 23 < b)}
and the circular disks
D = {(z1, 32, x3) | (21)* + (22)* < a® and z3 € {0,b}} .

Note a and b are given constants, and m is the outward unit normal to the enclosed
volume.
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Problem 1 (50 points)
Considering an exponential distribution (function) model,

£(8) = 5 exp(—1/3),

with an unknown parameter .
We have collected a set of data {t;}1, in measurements that satisfy the distribution function
model with the unknown parameter,

{372, = {1.2,3.0,6.3,10.1,5.2,2.4,7.1,6.9,4.2,3.8} .

To quantify the unknown parameter A with the data, we require that the unknown parameter
A making the following objective function maximum, i.e. there exists a parameter A\ such that it

makes log L(\) = max, g (log L(})), where

1 1 1 1
L(N) = T2, £ exp(—t:/A) = 1 exp(—t1/A) - 3 exp(—t2/A) -+ 5 exp(—ti0/A)
This is usually expressed as

A = arg max, g log(L(})) .

(a) Find A ?
(b) How do I know that A maximizes log L(\) ?

Problem 2 (50 points)
Consider the following 3 x 3 matrix,

A=

o = O
—_— O =
S = O

(1) Find all the eigenvalues of the matrix [A];
(2) Find all the corresponding eigenvectors ;
(3) Find the eigenvalues of the matrix B = A3,
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Problem 1. (60 Points)

Consider the following cubic polynomial interpolation function for a beam element,
v() =co+ a1+ + 3, VEE(0,L)

and let that
4
v(€) = N1(€)vo + Na(€)bo + Na(§)vr + Na(€)0 = > Ni(&)ug
=1

where € € (0, L), and uy = vo;ue = p;us = vr, and ug = 0.
Thus, we have

v(0) = ¢

00) = a

(L) = co+cal+cal? +c3l?
O(L) = ¢ +2coL + 3c3L?

Find cg, ¢1, co and c3 by solving the following equation,

10 0 0 co v(0)
01 0 0 ca | | 6(0)
1 L L? L3 ca | | v(L)
0 1 2L 3L? c3 6(L)

and identify
Nl(g)’N2(§)7N3(€)v and N4(€) :



Problem 2. (40 Points)
Let

Hi(§) = (1—3(%)2+2(%)3) and
Hy(§) = 5(1—%)2

Calculate the following elements of stiffness:

L
(] = /0 H(€)EIH!(€)dE | ij=1,2

where ET are constant, and H/(§) := d;gi,i =1,2.
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