Mathematics

Problem 1 (30 Points)

Consider a 4×4 matrix defined in the following,

$$A = \begin{bmatrix} 0 & \ln x & 0 & \ln x \\ 0 & 0 & 1 & 0 \\ x & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix},$$

where x > 0. Let matrix B be defined as

$$B = A^{2021}$$
.

Find

$$\frac{d}{dx}\det(B)\,.$$

Hint: for square matrices C and D of equal size, the determinant of their matrix product equals the product of their determinants, i.e., det(CD) = det(C) det(D).

Problem 2 (40 Points)

Consider a *n*-dimensional vector $\boldsymbol{x} = [x_1, ..., x_n]$. Vector \boldsymbol{x} is a "probability vector" such that $\sum_{i=1}^n x_i = 1$, and $\forall i, i = 1, ..., n, x_i \ge 0$. Define the entropy as

$$\mathcal{H}(\boldsymbol{x}) = -\sum_{i=1}^{n} x_i \ln x_i \,,$$

where by definition $0 \ln 0 \equiv 0$.

- (a) Find the vector x^* that maximizes the entropy.
- (b) Solve question (a) again, subjected to an additional linear constraint: $\sum_{i=1}^{n} \epsilon_i x_i = E$, $\epsilon_i > 0$, where ϵ_i and E are fixed/known.

Note: i) You do not need to know anything about the theory of probability to solve this problem; ii) For question (b) you do not need to find the analytical solution of x^* .

Problem 3 (30 Points)

A popular model for the growth of a population is written in the following form

$$\frac{dN}{dt} = \lambda N \left(1 - \frac{N}{K} \right) , N(0) = N_0 , N_0 \ge 0 ,$$

where $\lambda > 0$ is the intrinsic growth rate of the population, and $K, K > N_0$, is the carrying capacity of the environment. Solve this equation, and make a qualitative plot of N(t).

Mathematics PhD Prelim Exam Spring 2021

1. (30pts) Consider an initial value problem governed by the ordinary differential equation

$$\ddot{y} - 5\dot{y} + 6y = e^{2t}$$

with initial conditions y(0) = 1, $\dot{y}(0) = 1$. Solve for y(t).

2. (40 pts) Consider a partial differential equation for y(x,t)

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{\lambda} \frac{\partial^2 y}{\partial t^2}$$

where $x \in [0, l]$, $t \in [0, \infty)$, and $\lambda, l > 0$ are given. Find y(x, t) assuming that $\dot{y}(x, t)|_{t=0} = 0$, and

$$y(x,0) = \begin{cases} \frac{2hx}{l} & x \le l/2\\ 2h - \frac{2hx}{l} & x > l/2, \end{cases}$$

where h > 0 is given.

3. (30pts) Consider three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^4$, where

$$a = (1, 2, 0, 3)^T$$

 $b = (0, 1, 2, 3)^T$
 $c = (1, 1, 2, 2)^T$

Find an orthonormal basis for

 $\operatorname{span}\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$

using the Gram-Schmidt method.

Mathematics PhD Prelim Exam Spring 2020

1. (30pts) Consider the following linear system $\dot{x} = Ax$, where

$$\boldsymbol{A} = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 0 \\ 0 & 0 & -4 \end{bmatrix}.$$

Determine $\boldsymbol{x}(t)$ when

$$\boldsymbol{x}(0) = \left(egin{array}{c} 1 \\ 2 \\ 1 \end{array}
ight) ;$$

please express your final answer entirely in terms of <u>real-valued</u> quantities to facilitate its interpretation.

2. (50pts) Consider a rectangular membrane, occupying the region $0 \le x \le 4$ and $0 \le y \le 6$, whose deflection is governed by

$$\ddot{u} = c^2 \nabla^2 u \,.$$

The membrane is fixed on its perimeter. Using separation of variables, determine the frequency of the second natural mode of vibration. Assume $c = 1/\pi$.

3. (20 pts) Evaluate the surface integral

$$I = \int_{\mathcal{S}} \left(x_1 n_1 + 8.0 x_2 n_2 + 11.0 x_3 n_3 \right) \, dA \,,$$

where $\mathcal{S} = \mathcal{C} \cup \mathcal{D}$ consisting of the cylinder

$$\mathcal{C} = \{ (x_1, x_2, x_3) \mid (x_1)^2 + (x_2)^2 = a^2 \text{ and } 0 \le x_3 \le b \}$$

and the circular disks

$$\mathcal{D} = \left\{ (x_1, x_2, x_3) \mid (x_1)^2 + (x_2)^2 \le a^2 \text{ and } x_3 \in \{0, b\} \right\}$$

Note a and b are given constants, and n is the outward unit normal to the enclosed volume.

UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2019 Structural Engineering, Mechanics and Materials

NAME _____

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1 (50 points)

Considering an exponential distribution (function) model,

$$f(t) = \frac{1}{\lambda} \exp(-t/\lambda),$$

with an unknown parameter λ .

We have collected a set of data $\{t_i\}_{i=1}^{10}$ in measurements that satisfy the distribution function model with the unknown parameter,

$$\{t_i\}_{i=1}^{10} = \{1.2, 3.0, 6.3, 10.1, 5.2, 2.4, 7.1, 6.9, 4.2, 3.8\}$$

To quantify the unknown parameter λ with the data, we require that the unknown parameter λ making the following objective function maximum, i.e. there exists a parameter $\hat{\lambda}$ such that it makes $\log L(\hat{\lambda}) = \max_{\lambda \in \mathbb{R}} (\log L(\lambda))$, where

$$L(\lambda) = \prod_{i=1}^{10} \frac{1}{\lambda} \exp(-t_i/\lambda) = \frac{1}{\lambda} \exp(-t_1/\lambda) \cdot \frac{1}{\lambda} \exp(-t_2/\lambda) \cdot \dots \cdot \frac{1}{\lambda} \exp(-t_{10}/\lambda) .$$

This is usually expressed as

$$\hat{\lambda} = \arg \max_{\lambda \in \mathbb{R}} \log(L(\lambda))$$
.

(a) Find $\hat{\lambda}$?

(b) How do I know that $\hat{\lambda}$ maximizes log $L(\lambda)$?

Problem 2 (50 points) Consider the following 3×3 matrix,

$$\mathbf{A} = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

- (1) Find all the eigenvalues of the matrix $[\mathbf{A}]$;
- (2) Find all the corresponding eigenvectors ;
- (3) Find the eigenvalues of the matrix $\mathbf{B} = \mathbf{A}^3$.

College of Engineering

Department of Civil and Environmental Engineering Structure Engineering, Materials, and Mechanics (SEMM)

2019 Spring PhD Preliminary Exam: Mathematics

Problem 1. (60 Points)

Consider the following cubic polynomial interpolation function for a beam element,

$$v(\xi) = c_0 + c_1\xi + c_2\xi^2 + c_3\xi^3, \quad \forall \ \xi \in (0, L)$$

and let that

$$v(\xi) = N_1(\xi)v_0 + N_2(\xi)\theta_0 + N_3(\xi)v_L + N_4(\xi)\theta_L = \sum_{I=1}^4 N_I(\xi)u_I$$

where $\xi \in (0, L)$, and $u_1 = v_0$; $u_2 = \theta_0$; $u_3 = v_L$, and $u_4 = \theta_L$. Thus, we have

$$v(0) = c_0$$

$$\theta(0) = c_1$$

$$v(L) = c_0 + c_1 L + c_2 L^2 + c_3 L^3$$

$$\theta(L) = c_1 + 2c_2 L + 3c_3 L^2$$

Find c_0, c_1, c_2 and c_3 by solving the following equation,

0	c_0		$\begin{bmatrix} v(0) \end{bmatrix}$
0	c_1	=	$\left. \begin{array}{c} \theta(0) \\ v(L) \end{array} \right $
L^3	c_2		v(L)
$3L^2$	c_3		$\theta(L)$
		$\begin{array}{c c}0 & c_1\\L^3 & c_2\end{array}$	$\begin{array}{c c} 0 \\ L^3 \\ c_2 \end{array} = \begin{array}{c c} c_1 \\ c_2 \end{array} = \begin{array}{c c} \end{array}$

and identify

$$N_1(\xi), N_2(\xi), N_3(\xi), \text{ and } N_4(\xi)$$
.

Problem 2. (40 Points) Let

$$H_1(\xi) = \left(1 - 3\left(\frac{\xi}{L}\right)^2 + 2\left(\frac{\xi}{L}\right)^3\right) \text{ and} H_2(\xi) = \xi \left(1 - \frac{\xi}{L}\right)^2.$$

Calculate the following elements of stiffness:

$$[K_{ij}] = \int_0^L H_i''(\xi) EIH_j''(\xi) d\xi \ , \ i, j = 1, 2$$

where EI are constant, and $H_i''(\xi) := \frac{d^2 H_i}{d\xi^2}, i = 1, 2.$