Mathematics

Problem 1 (30 Points)

Consider a 4×4 matrix defined in the following,

$$
A=\left[\begin{array}{cccc}
0 & \ln x & 0 & \ln x \\
0 & 0 & 1 & 0 \\
x & 0 & 0 & 0 \\
0 & 1 & 0 & 2
\end{array}\right],
$$

where $x>0$. Let matrix B be defined as

$$
B=A^{2021}
$$

Find

$$
\frac{d}{d x} \operatorname{det}(B)
$$

Hint: for square matrices C and D of equal size, the determinant of their matrix product equals the product of their determinants, i.e., $\operatorname{det}(C D)=\operatorname{det}(C) \operatorname{det}(D)$.

Problem 2 (40 Points)

Consider a n-dimensional vector $\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]$. Vector \boldsymbol{x} is a "probability vector" such that $\sum_{i=1}^{n} x_{i}=1$, and $\forall i, i=1, \ldots, n, x_{i} \geq 0$. Define the entropy as

$$
\mathcal{H}(\boldsymbol{x})=-\sum_{i=1}^{n} x_{i} \ln x_{i}
$$

where by definition $0 \ln 0 \equiv 0$.
(a) Find the vector x^{*} that maximizes the entropy.
(b) Solve question (a) again, subjected to an additional linear constraint: $\sum_{i=1}^{n} \epsilon_{i} x_{i}=E, \epsilon_{i}>0$, where ϵ_{i} and E are fixed/known.

Note: i) You do not need to know anything about the theory of probability to solve this problem; ii) For question (b) you do not need to find the analytical solution of x^{*}.

Problem 3 (30 Points)

A popular model for the growth of a population is written in the following form

$$
\frac{d N}{d t}=\lambda N\left(1-\frac{N}{K}\right), N(0)=N_{0}, N_{0} \geq 0
$$

where $\lambda>0$ is the intrinsic growth rate of the population, and $K, K>N_{0}$, is the carrying capacity of the environment. Solve this equation, and make a qualitative plot of $N(t)$.

Mathematics

PhD Prelim Exam Spring 2021

1. (30pts) Consider an initial value problem governed by the ordinary differential equation

$$
\ddot{y}-5 \dot{y}+6 y=e^{2 t}
$$

with initial conditions $y(0)=1, \dot{y}(0)=1$. Solve for $y(t)$.
2. (40 pts) Consider a partial differential equation for $y(x, t)$

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{\lambda} \frac{\partial^{2} y}{\partial t^{2}}
$$

where $x \in[0, l], t \in[0, \infty)$, and $\lambda, l>0$ are given. Find $y(x, t)$ assuming that $\left.\dot{y}(x, t)\right|_{t=0}=0$, and

$$
y(x, 0)= \begin{cases}\frac{2 h x}{l} & x \leq l / 2 \\ 2 h-\frac{2 h x}{l} & x>l / 2\end{cases}
$$

where $h>0$ is given.
3. (30pts) Consider three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{4}$, where

$$
\begin{aligned}
\boldsymbol{a} & =(1,2,0,3)^{T} \\
\boldsymbol{b} & =(0,1,2,3)^{T} \\
\boldsymbol{c} & =(1,1,2,2)^{T} .
\end{aligned}
$$

Find an orthonormal basis for

$$
\operatorname{span}\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}
$$

using the Gram-Schmidt method.

Mathematics

PhD Prelim Exam Spring 2020

1. (30pts) Consider the following linear system $\dot{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}$, where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
3 & -3 & 0 \\
3 & 3 & 0 \\
0 & 0 & -4
\end{array}\right]
$$

Determine $\boldsymbol{x}(t)$ when

$$
\boldsymbol{x}(0)=\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right)
$$

please express your final answer entirely in terms of real-valued quantities to facilitate its interpretation.
2. (50pts) Consider a rectangular membrane, occupying the region $0 \leq x \leq 4$ and $0 \leq y \leq 6$, whose deflection is governed by

$$
\ddot{u}=c^{2} \nabla^{2} u \text {. }
$$

The membrane is fixed on its perimeter. Using separation of variables, determine the frequency of the second natural mode of vibration. Assume $c=1 / \pi$.
3. (20 pts) Evaluate the surface integral

$$
I=\int_{\mathcal{S}}\left(x_{1} n_{1}+8.0 x_{2} n_{2}+11.0 x_{3} n_{3}\right) d A
$$

where $\mathcal{S}=\mathcal{C} \cup \mathcal{D}$ consisting of the cylinder

$$
\left.\mathcal{C}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}=a^{2} \text { and } 0 \leq x_{3} \leq b\right)\right\}
$$

and the circular disks

$$
\mathcal{D}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2} \leq a^{2} \text { and } x_{3} \in\{0, b\}\right\} .
$$

Note a and b are given constants, and \boldsymbol{n} is the outward unit normal to the enclosed volume.
\qquad

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1 (50 points)
Considering an exponential distribution (function) model,

$$
f(t)=\frac{1}{\lambda} \exp (-t / \lambda)
$$

with an unknown parameter λ.
We have collected a set of data $\left\{t_{i}\right\}_{i=1}^{10}$ in measurements that satisfy the distribution function model with the unknown parameter,

$$
\left\{t_{i}\right\}_{i=1}^{10}=\{1.2,3.0,6.3,10.1,5.2,2.4,7.1,6.9,4.2,3.8\}
$$

To quantify the unknown parameter λ with the data, we require that the unknown parameter λ making the following objective function maximum, i.e. there exists a parameter $\hat{\lambda}$ such that it makes $\log L(\hat{\lambda})=\max _{\lambda \in \mathbb{R}}(\log L(\lambda))$, where

$$
L(\lambda)=\Pi_{i=1}^{10} \frac{1}{\lambda} \exp \left(-t_{i} / \lambda\right)=\frac{1}{\lambda} \exp \left(-t_{1} / \lambda\right) \cdot \frac{1}{\lambda} \exp \left(-t_{2} / \lambda\right) \cdots \cdot \frac{1}{\lambda} \exp \left(-t_{10} / \lambda\right) .
$$

This is usually expressed as

$$
\hat{\lambda}=\arg \max _{\lambda \in \mathbb{R}} \log (L(\lambda))
$$

(a) Find $\hat{\lambda}$?
(b) How do I know that $\hat{\lambda}$ maximizes $\log L(\lambda)$?

Problem 2 (50 points)
Consider the following 3×3 matrix,

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(1) Find all the eigenvalues of the matrix $[\mathbf{A}]$;
(2) Find all the corresponding eigenvectors ;
(3) Find the eigenvalues of the matrix $\mathbf{B}=\mathbf{A}^{3}$.

Department of Civil and Environmental Engineering Structure Engineering, Materials, and Mechanics (SEMM)

2019 Spring PhD Preliminary Exam: Mathematics

Problem 1. (60 Points)
Consider the following cubic polynomial interpolation function for a beam element,

$$
v(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}+c_{3} \xi^{3}, \quad \forall \xi \in(0, L)
$$

and let that

$$
v(\xi)=N_{1}(\xi) v_{0}+N_{2}(\xi) \theta_{0}+N_{3}(\xi) v_{L}+N_{4}(\xi) \theta_{L}=\sum_{I=1}^{4} N_{I}(\xi) u_{I}
$$

where $\xi \in(0, L)$, and $u_{1}=v_{0} ; u_{2}=\theta_{0} ; u_{3}=v_{L}$, and $u_{4}=\theta_{L}$. Thus, we have

$$
\begin{aligned}
v(0) & =c_{0} \\
\theta(0) & =c_{1} \\
v(L) & =c_{0}+c_{1} L+c_{2} L^{2}+c_{3} L^{3} \\
\theta(L) & =c_{1}+2 c_{2} L+3 c_{3} L^{2}
\end{aligned}
$$

Find c_{0}, c_{1}, c_{2} and c_{3} by solving the following equation,

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & L & L^{2} & L^{3} \\
0 & 1 & 2 L & 3 L^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
v(0) \\
\theta(0) \\
v(L) \\
\theta(L)
\end{array}\right]
$$

and identify

$$
N_{1}(\xi), N_{2}(\xi), N_{3}(\xi), \text { and } N_{4}(\xi) .
$$

Problem 2. (40 Points)
Let

$$
\begin{aligned}
& H_{1}(\xi)=\left(1-3\left(\frac{\xi}{L}\right)^{2}+2\left(\frac{\xi}{L}\right)^{3}\right) \text { and } \\
& H_{2}(\xi)=\xi\left(1-\frac{\xi}{L}\right)^{2}
\end{aligned}
$$

Calculate the following elements of stiffness:

$$
\left[K_{i j}\right]=\int_{0}^{L} H_{i}^{\prime \prime}(\xi) E I H_{j}^{\prime \prime}(\xi) d \xi, \quad i, j=1,2
$$

where $E I$ are constant, and $H_{i}^{\prime \prime}(\xi):=\frac{d^{2} H_{i}}{d \xi^{2}}, i=1,2$.

