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03'( CHAPTER 1
2

RESIDENCE TIME DISTRIBUTION THEORY & PRACTICE

According to Danckwerts (1953), the mean residence time T of

an element of fluid volume within a fully contained. continuous
flow reactor with a total fixed volume of V operated at steady
state is

(1-1) T o= V/Q

in which @ is the steady volumetric flow rate. This relation
holds true irrespective of the state of mixing, or tvpe of flow
(Denbigh, 1965).1 .

. 1-1. DANCEWERTS~ DERIVATION

Let 86V = @ dt represent a fluid element which entered the
system T time ago. Also, let FP(t) represent the probability that

the element remains in the reactor during the period T. The
total volume of the fluid in the reactor must thus be

v o= Q}P(t)-dt

Now, let FA(T) represent the'probability of a fluid element leav-"
ing the system during the period T so that P(t) + F(t) = 1. The
foregoing equation then becomes

. g
5 = _of[l—ze(r)]dm

which upon integration by parts gives
R(=)

g = [1-R(t=®)] © -~ [I—R_(t-O)]-(? + ft-dR('c)

E(0)

1 A fully contained veseel is one that has no diffusion or dis-
persion at the entrance or exit of the vessel so that a fluid
element once inside the reactor cannot escape back into the input
stream. or once removed from the vesgel cannot return to the
vegsel (Seinfeld & Lapidus, 1974).
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with bhoundary conditions of R(t) = 0 at Tt = 0, and 1.0 at t=w

(chance of 100% removal in an infinite time) so that

1
g = ['c-dk('n:) = c.g. of R(t) = T (Egn.1-1)

The derivative of FR(t) with T gives the so-called Regidence
Time Distribution Function r(tT) (RTD-function) which in reality
is a probability density function (Seinfeld & Lapidus, 1874);
i.e.,

~ dR(T) _
(1-2) e r(T)

This derivation generated much comment when first published in
1953 because a tracer particle used to determine the RID-function
experimentally may diffuse at a rate differing from the bulk
flow, but it appears that such a limitation probably is not very
significant in practice (Spalding, 1958).

1-2. RTD-FUNCTIONS FOR TWO IDEAL REACTORS

Implicit to the following derivations is that A(tT) applies
equally well to N particles introduced individually at different
times to a reactor operated at steady state, or N particles
introduced all at once to the reactor. This is called ergodicity
(Seinfeld & Lapidus, 1974) which can be interpreted to mean that
BE(t) also represents the volume fraction of the fluid leaving the
reactor which has resided in the system over a time of T or less
(KEramer & Westerterp, 1963).

The symbol T has been used here to designate backwards in
time. but A(T) applies equally well to the future, and so it may
also be written as R(£).2

The Plug Flow Reactor (PFR): This ideal reactor contains no
backmixing whatsoever; hence, every fluid element has the same

residence time of T so that

0 when 0<#< T
1 when t 21

(1-3) R( %)
E(¢t)

2 Additionally, nomenclature has changed through the years so
that r(&) is now E(t), R(t) is F(t/xt), and P(t) 1s I(t/t) (Leven-
spiel, 1982). The earlier notation will continued to be utilized
herein, however.
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This shows that the RTD-function of this reactor must be infinite
at t = T, and zero everywhere else. This particular ideal reac-
tor haes also been called piston flow, the non-backmixed reactor,
and the ideal tubular reactor.

The Continuous Flow Stirred Tank Reactor (CSTR): The contents of
this ideal tank reactor are mixed so intensely that the composi-
tion becomes uniform throughout and equal to that in the reactor
output. The probability that any fluid element will be removed
from the reactor over an instant of time &t must thus be con-
stant; i.e.,

(o]
™~

Q- 6t
v

(l-4) | R(Bt) =

Alf

Additionally. the probability of a fluid element remaining in the
vessel over the time t+6¢ is P(t+6t) = P(t)-P(6¢t) 80 that

[1-R(t+82)] = [1-R()][1-R(8L)]

remembering that P(¢t) = 1-R(t). Upon taking the product indi-
cated, one obtains :

R(t+8t) - R(t) = R(61)-[1-R()] = %t--[l-k(t)]

with the aid of Egn. 1-4. Letting 6t go to the 1limit of dt. one
obtains the differential equation

AR ()

(1-5) at

L Ry
=

all=

which has a boundary limit of R(t=0) = 0, or

(1-6) R(t) = 1 - exp-t/T
(1-7) rt) aRlt) g L exp-t/T
dat T

This ideal reactor has also been called the completely backmixed
reactor.

1-3. MATERIALS BALANCES

This approach is commonly used to evaluate the natures of
various reactor systems. A general formulation is (Bird, Stewart
& Lightfoot., 1860)
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(1-8)

Rate of accumu- Rate of mass Rate of Rate of mass J
lation of mass = of J into - mass of J + produced by
of J in the the system out of the reaction

system system

EXERCISE 1-1: Species J dissolved in the bulk flow undergoes a
first—-order reaction in a CSTR at steady state. What is the
concentration of J in the reactor effluent for a steady input
concentration of ¢i1 and a first-order rate constant of £7?

Being a CSTR, the concentration ¢ within the tank reactor
equals that in the effluent and Egn. 1-8 gives
0 = Q:¢, - Q-c - kVc
or '

c 1
1-9 il =
( ) Cy l1+kt

1-4. DETERMINING THE RTD-FUNCTIONS OF REAL REACTORS

Tracer studies are often used to determine experimentally the
RTD-functions of real reactors. It can be readily appreciated
that the appropriate tracer should be readily soluble in the bulk
flow, chemically inert with no sorptive capabilities, and readily
analyzed with good accuracy and precision. Two commonly utilized
methods of tracer application follow.

The Unit Impulse (Pulse) Input: A total mass m; of tracer is
introduced into the entrance of the reactor in the shortest
time practicable. The concentration ca(t) of the tracer in
the effluent is monitored from the moment of addition until
it ceases to be detected.

The rate of tracer mass removal from the system is @eoa(t) so
that

(1-10) ety - m%c,,ct)

and hence the unit impulse gives directlyv the RTID-function for
anv reactor. A major drawback of this approach is that it is
impossible to produce physlcally a unit impulse of infinite mag-
nitude and infinitesgimal duration.



The Unit Step Input: A tracer is added at a steady rate to the
reactor feed to give a steady input concentration of ci. The
concentration cal(t) of the tracer in the effluent is then
monitored from the instant of tracer addition until it
attains a concentration approximating that of caz.

Now in accord with Denbigh (1965), let ¢ equal the time
lapsed from the start of tracer application. The fraction of the
volume of the fluid element which entered at that time contribut-
ing to the exit stream is r(¢)8¢t. Similarly, the fraction of the
second fluid element which contributes to the exit stream at time
t-8¢t is r(t-6t)dt, etc., down to t-ndt = O where n = t/8t. Con-
sequently,

Goa( )bt = Qec1bt [r(t)dt + r(t-0L)0t +....+ r(t-n8¢t)6¢t]

and upon letting 8t-dt. one obtains

cq(2)

Cy

t
f'r(u)du = R(t)

[+]

(1-11)

reactor. A major drawback of this method is that it may prove
difficult to determine accurately the small differences between
ca(t) and ci resulting from the extensive "tailing off" in the
RTD-function resulting from the following causes:

Dead Spvace: A region of a reactor in which fluid elements reside
for periods much longer than V/@. Significant talling may
last from such a space for more than three to four mean resi-
dence times (Seinfeld & Lapidus, 1974). Impatience on the
part of the experimenter usually causes the study to be
terminated too quickly, resulting in computed mean residence
times substantially less than the theoretical of V/@.

Short—-circuiting: This occurs when some of the fluid elements
glip through the reactor in times much less than V/&. This
must always be balanced, however, by some fluid elements
residing in the system for periods much greater than V/&;
hence, it is not always possible to tell if dead spaces or
short—-circuiting is responsible for the observed tailing of

r(t). To make matters worse, some reactors such as fluidized
beds posesess both significant dead spaces and short-
clrcuiting.

Note that the two eimple methods of tracer addition discussed
here may not suffice for reactor systems possessing relatively
glight dispersion or short mean residence times. In that case a
periodically fluctuating input should be considered.
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CHAPTER 2
SOLVING COMPOSITE MODELS OF MIXING WITH LAPLACE TRANSFORMS

Composites of ideal reactor elements connected in series and
parallel are often used to model the results of tracer tests
performed on real reactors.. Such composites lend themselves
readily to analysis with the Laplace transform (L.T.) technigue.
Also, the L.T. technique provides a very convenient means of
obtaining the moments of RTD-functions (Chapter 3) as well as aid
considerably in obtaining the solution of partial differential
equations (Chapter 5).

2-1_. DEFINITIONS

The L.T. of a real function f(t) is defined as

2-1) as) = [eFwar

[+]
in which ¢ is a real variable (not necessarily time), 5 is a
complex variable of the form s,+is,, and g(s) represents the L.T.
of f(t). The limits on the integral depicted must be finite at ¢
= 0 as approached from the positive side, and at ¢ = »; other-
wise, f(t) has no L.T. For example, the function exp(tZ) fails
to converge at infinity because |exp(t=2)! increases more rapidly
than exp(at) at large values of t with a constant. Fortunately,
seldom if ever are such uncooperative functions encountered in
the physical world (Seinfeld & Lapidus, 1874).

Symbols: A specific property such as concentration e(t) can, of
course, be ascribed to the generalized function f£(¢) appearing in
Egn. 2-1. Common practice is then to replace f(t) by e(t), and
g(s8) by C(s). This is not feasible, of course, if different
properties have already been assigned to the lower and capital
cases of the same letter; e.g., r(t) and R(t). In such an event,

r(s), for example, will be used in lieu of g(s) in Egn. 2-1.
2-2_. LAPLACE TRANSFORM OPERATIONS & PAIRS

Operation 6 of Table I attached shows why the L.T. technique
was devised in the first place.. To prove, we will first simplify
notation by letting £ (t) stand for df(t)/dt, £ “(t) for d?f(t)/dt?,
etc. Also, we will use LLf (t)] to designate the L.T. of £ (t).
Ean. 2-1 then gives

wFwl = [eswat

0
which upon integration by parts yields Operation 6; i.e.,



- sfe"‘f(t)dt + e FW) s = sg(s) - £(0)

0

Note that one has to know the value of £f(t) at ¢t = 0 as
approached from the positive side in order to satisfy the bound-
ary condition f(0); consequently, it is sometimes written as

£{+0).

One can just as well write Operation 6 in the reverse direc-—
tion to obtain the inverse of the s-domain function; i.e.,
L7'[sg(s)] = F(t) + £(0)
as shown by Operation 12 of Table I.

Operation 7 gives the L.T. of a second-order differential;
1:8x;
LIF ()] = sPg(s) - sf(+0) - F(+0)
where now two different boundary conditions are stipulated at ¢ =
0 as approached from the positive side.

Operation 4 consists of shifting the origin a distance b in
the negative direction. This causes f(t) to equal zero at & < b,
and £f(t-b) at t > b. Ean. 2-1 thus becomes

L{f(t=-b)] = fo-dt + fe"‘f(t—b)dt

- e'“fe'“’f(u)du = % g(s)

The foregoing is called the peal-translation operation.

Pairing specific functions with their corresponding Laplace

transforms are called Transform Pairs. They may be used to
obtain the inverse of s-domain functions; to wit,

o 3 ' 1 ]_, : 1
Lle ™] fexp (s+a)t-at s_+aoe dj e

0
L—ll: 1 :I e e—at
s+a

in which a is constant (see also Transform Pair 4 of Table II
attached to this chapter).

and so



2-3. DERIVATION OF THREE s-DOMAIN INPUT FUNCTIONS

Input functions have already been covered in Section 1-4 of
Chapter 1, and their Laplace transforms are listed in Table Il as

derived below.

C(’lt) c(t)

Fig. 2—1

Transform Pair 2 of Table II: Commencing at time "b" as in Fig.

<

2-1(a), and then proceeding indefinitely at a constant concentrd—
tion ci gives the unit step input function

O: 0< t< b
1: t =2 b

ci(t)/cx
ci(t)/ca

Hence., from Egn. 2-1

(2-2) Guls) fe-“dz -

c
; b

e

-bs

@ |~
©

Transform Pair 3 of Table II: The rectangular pulse input repre-
gents a step input at time "a" followed by a negative step input
of the same magnitude at time "b" as shown in Fig. 2-1(b). The
L.T. of the unit rectangular pulse input may now be written
directly from Ean. 2-2; i.e.,

C¢(S) . e-ur_e-bs

Cy 3 s

(2-3)

Transfbrm Pair 1 of Table II: The impulse input equals zero
everywhere except at € = a.

First let b = a + At in Ean. 2-3 and then let the fotal mass
of tracer mr added at a steady rate over the period At be con-
stant so that ci1 = mr/(@At). Finally., let At-0 to obtain

C.(s) QC.(s) —ar 1. [l—e"‘f"} us

- = g lim|—— = g
Cy mr At+0 s+ At
after one application of L Hopital s rule. This input. called
the Direc delta function, is often designated by the symbol.
6(t-a). o,

(2-4)
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We will always apply our inputs in thie chapter at time zero
(a = 0) so that

(2-5) C‘C(S) - % (Unit Step Input)
{
and
(2-6) m—Q—cl(s) = I[6(f)] = 1  (Unit Impulse Input)
T

We also know from the discussion given in Chapter 1 that

(2-7) R(s) = ér—:(s)

2-4. TWO s-DOMAIN TRANSFER FUNCTIONS

CSTR: The concentration e(t) of a conservative substance within
a CSTR can be obtained from a materials balance taken about the
reactor, or

dc(t)
2-8
( ) =5

in which a=1/T and ci(t) = input concentration of the substance.

+ ac(t) = ac/(d)

Employing Operations 1,2, and 6, one obtaing the following
L.T. of Egn. 2-8; i.e.,
[sC(s)-c(+0)] +_ aC(s) = aC(s)

L

or
c(+0) + al(s)

2-9 <

( ) C(s) ey

where c¢(+0) is the concentration of the substance within the

reactor at time zero. We will always assume herein for modeling

purposes that the reactor is free of the substance at time zero

(e(+0) = 0); consequently,

a
s+a

(2-10) C(s) = Cqu(s) = ( )C&S) ; (CSTR)

PFR: Setting "b" equal to T in Operation 4 gives the L.T. of
priston flow directly: i.e.,

(2-11) Cq(s) = exp(-ts): C(s) (PFR)

Note that as in the case of the CSTR, it is assumed that the PFR
ie free of the conservative substance at time zero.

The Transfer Funotionsf We know from Chapter 1 that a unit
impulse input leade to the RTD-function directly, so that setting
Ci(s) = 1 in Ean. s 2-10 and 2-11 gives

e



1.

a
s+a

(CSTR)

(2-12) r(s) =

(2-13) r(s) = exp(-ts) (PFR)

Note that r(s) is independent of either input or start-up condi-
tions; hence, it is called the transfer or system function in
most fields of engineering endeavor.

2-5. HOOKUPS IN TANDEM (CASCADES)

' v ¥
PFR 2
- (t et co(t
0 S i) | ko [eatt)
CSTR

- Fig. 2-2

A PFR is hooked up in series with a CSTR as shown in Fig. 2-2
above. The solution in the s-domain is (refer to Egn. s 2-10 &

2-11) .

Ci(s) = ( =2 )e_t"'Cz(S)

(2-14) C.(s) = s+,

s+a

in which a, = @/'Vz = 1/%, and T, = Vi/Q. Letting Ci(s) = 1 gives
the L.T. of the overall transfer function, or

(2-15) . r(s) = exp(-v,s)( a) = F(8)Tals)

s+a;
as indicated by Eqn. "s 2-12 and 2-13.

Operatlon 4 and Transform Pair 4 give the inverse of Ean.
2-15; i.e.

(2-16) z»(t)zo:' S o< t< T

F(t) = 17T, e ¢ t 2 T,
From the foregoing 1t is readily apparent after a bit of
thought that: )
i. The L.T. of the overall transfer function is always
(2-17) r(s) = r,(s) T,(8) Ty(8)e. To(8) n=1,2,3...
for n elements in a chain.

ii. The overall transfer function ies independent of the order
in which the elemente are hooked together.



EXERCISE 2-1: A cascade of tank reactors consists of any number
N of identical CSTR s hooked up in series with the total
capacity V being held constant. Determine the RTD-function

for a cascade.

The solution in the s-domain is (refer to Egn. s 2-12 and
2-17)

- a N N
where a = N/t and T = /@ (a constant). Transform Pair 6 gives

the inverse

ot s 1 N

— - N—_—.n - — ———— N-l -
(2-19) rt) a N-D)! e = IN-D)I 0" “exp-6

in which 8 = Nt/T is a dimensionless time.

Dimensionless plots of Ean. 2-19 are shown in Fig. 2-3 with N
varying from 1 to 40. Clearly, the variance decreases with an

increasing N, and the solution seems to be converging to t/tT = 1.
This can be proven mathematically by expanding Eagn. 2-18 into a
binomial series and setting N = «. The result gives the series

expansion for exp(-te): i.e., plug flow as specified by Ean.
2-13. ;

EXERCISE 2-2: Two CSTR s of unequal capacity are hooked up in
series with the total capacity V being held constant. The
portion of V assigned to the smaller reactor is y. Determine

the RTD-function for this cascade.

The solution in the s-domain is

7o - (%)(55)
in which @ = 1/yT, B = 1/(1-y)T, and T = V/&@ (a constant).

Transform Pair 8 gives the inverse

1 ] ]
(2-21) r(t) E(I——Z\()-[exP_(T'_Y) exp (Y):l for 0<y<0.5

in which 6 = t/T.
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EXERCISE 2-3: Determine the RTD-function for a CSTR cascade com-
prised of two reactors subjected to an instant feedback of RQ

as shown in Fig. 2-4 in which @20.

| |
oS X cit) Floteard] . eall) o
‘(1+8)Q
Y
- BQ cg(t)
Fig. 2-4
Egqn. 2-10 gives us
a a Y
(2-22) CJ08) = (S+0.)C2(S) 5 (S+CL) C,(s)
in which a = 2(1+B)/T. We also know that
[(1+B)Q]-c,(t) = Qct) + (BQ) cylt)
consequently.

from taking a materials balance about Junction X:

s

(2-29) e - (rgle + (fh)eu

T

in the s-domain. The substitution of the foregoing into Ean.

2-22 gives
a?/(1+B)

s2+2as+a?/(1+B)
after some algebraic manipulation and the application of an unit
impulse input.

r(s) =

The second order polynomial in s appearing in the denominator
‘of the foregoing transfer function is not listed in our short
" table of Transform Pairs. Transform Pair B8 can be used, however,
to obtain the inverse to the function after determining the roots

r1 and rz of the polynomial; i.e.,

- a?/(1+p) a?/(1+B)
(e=ea rs) = GoroGe-ra) | [srel+allsrall-q)]
in which q-JB/(l+B). The inverse then becomes
(2-25) r(t) = 2 .. sinhqe
tq

where 8 = 2(1+B): (t/T).
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The procedure shown for obtaining the inverese of a transfer
function having a denominator in the form of a polynomial in s
applies only to polynomials of fourth order or less because this
marks the limit at which roots of polynomials can be determined
analytically (Burington, R. 8., 1948). For higher orders. real
values have to be inserted in the equations with roote determined

numerically.
2—-6. PROCURING THE INVERSE

Up to this point Transform Paire have been used to obtain the
inverses to various s-domain functions, but no table can include
all rossible combinationes encountered in practice. Other
arpproaches include the following:

i. The appropriate utilization of certain useful Laplace
Orerations such as Operations 4 and 14 (the convolution integral)

of Table 1.

ii. Expansion of the s-domain function into a series and
then inverting each term of the series.

1ii. Employing a standard technique called the method of

residues which can be used to obtain the inverse of just about
any rational polynomial in s of the type covered in this chapter.

This approach is described in detail in Apprendix A attached
hereto. Unfortunately, there seems to exist no standard tech- .
nigque to obtain the inverse of ifrrational functions in &s. A few
examples of this typre will be covered as the need arises in

subsequent developments. .

2
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TAELE I. LAFLACE OFERATIONS*

No, 70t g(s)
1 a f(t) ag(s)
2 F1(E) = fa(t) g1(8)*g,(s)
3 £ F () (_I)nd;g(nS)
s
4 0: 0<t<b/a l—e'b;’“g(s/a)
flat-b): t>b/a @
S I—eb”df(t/a) g(as-b)
a
6 d f(t) sg(s)-f(o)
dt
7 d?7(t) s?g(s)-sf(o)-f"(0)
dit?
8 . 9
5o f(ta) 5,9(s:a)
i Fw du Zg(s)
10 lirg f(t) llr‘gsg(s)
11 " lim £ (¢) limsg(s)




TRRLE I.

LAFLACE OFERATIONS*

17

f(t)

g(s)

j:t“f(t)dt

n \ %
lim (-1)»929(8) ©
20 ds"

13

L84 (o)

sg(s)

14

ff;(u)fz(t-u)du

g1(s)g2(s)

15

1 T
mj: ue M f(u)du

* Primar-ily

]

T 5

from Foberts, G, H.

a1
W,

s oanalvbiocal on

B, Saunders Co.,

7

e ims

v L aErT

and Fawufmnan, H. 4

Friladelphia, FA (1944).



TABLE II. EXAMPLES OF TRANSFORM PAIRS (Roberts & Kaufman, 1966)

No. F(B) g(s) Limits
8(t-a) e %8
(Unit Impulse) a0
Q: 0<t<dh le”‘ Rs>0
2 1: t>b s bz0
(Unit Step)
0: 0<t<a Rg>-
3 1: a<t<b g™~ g0 0<fax<b
O: t>b s
(Unit Pulse)
4 P i Rs>-Ra
s+a
15) 1-g7¢ l Xs>Max0,-Ra
a s(s+a)
(
6 tll-l _ 1 RXs>-Ra o
L (s+a)
7 sin at o Rs>S8a
g2+ g2
8 g - Pt I Rs>Max - Ra, -Rp
-a (s+a)(s+B)
9 1 b Rs>0
Jmt Js
10 nls™™? Rs>0

®
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CHAPTER 3
MOMENTS OF TRANSFER FUNCTIONS

Moments of transfer functions serve to check the quality of
tracer work as well as to facilitate selection of the best deter-

ministic model of mixing.
3-1. DEFINITIONS
Zero Moment: This is defined as

(3-1) fr(t)dt = R(t)]; = ]
0
(see Chapter 1).

First Moment: The first moment of the transfer function about.
the origin at ¢ = 0 is

1

(3-2) ft-r(t)dz - fz~dze(t) - T
[o] 4]

which must also equal /@ if the reactor is fully contained.

The first moment of the distribution about T is

(3-3) f(t—%)r(t)dt = ft-r(t)dt - T = 0

This proves that the moment of the r(t) function to the left of T
must always equal that to the right.

Variance: Designated by o¢2, this represents the second moment of
the distribution taken about <T. or

02 = {(t—%)zr(t)dt - '[t"r(t)dt - ZE{t-r(t)dt + Ezfr(t)dt

0
which simplifies to

(3-4) 02 = ftzr(t)dt - T

2

with the use of Egqn. s 3-1 and 3-2.

3-2. DETERMINATION

The moments of a postulated RTD-function can, of course., be
computed directly by performing the integrations specified in the
foregoing section. A much simpler approach consists of determin-
ing them from the s-domain solution without procuring the
inverse. The proof follows.
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According to Operation 3 of Table I;
a"g(s .
[( 1y )] - E)

in which n is the »n"th derlvatlve of Ean. 2-1 as follows:

gs) = [erwar

_dg(s) - -st
5= fe LF(E)dt

[]

dzg(s) - ,s8,2
R fe t2 £ (t)dt

[

(—1)"M = fe“‘t"f(t)dt

ds”®
0
Additionally, Operation 9 shows us that

R N

0

We must now resort to Operation 11 to extend the upper limit
on the integral in the real domain to infinity: i.e.,

Iim[ 2¢-1)" a‘,"g(s):l - 1ir3[fu"f(u)du:I
(D)=}

(3-5) ( ft FCt)dt

ag applied specifically to the transfer functlon. Note that n
also represents the n th moment of the transfer function about

the origin at ¢ = 0.

EXERCISE 3-1: Use Ean. 3-5 to determine the moments and variance
of the transfer function derived in Chapter 2 for the CSTR
cascade model. The L.T. of this function was determined to

be;

a
a+s

& N=1,2,3...

=

N
) where =

(2-18) r(s) = (

It is readily apparent that the foregoing eguation equals
unity irrespective of N if & is set equal to zero, thus fulfil-
ling the regquirement for a zero moment of a transfer function.



Egn. 3-5 gives a first moment (n = 1) of
| Ay, _Na® NV
dS‘ s=0 (a+s)n+1 §=0 a Q

when taken about the origin at ¢ = 0.

Likewise., the second moment taken about the origin at t = O
is
_atzF(s)l N(N+1)a"| NWN+1)-T° =2, T
: g (a+s)¥*2 °7° N2 N
which gives a variance of (Egn. 3-4)
= d?r(s) —2 T2
(3-6) a - e o — T = N
Note that the variance decreases from a maximum of T! for N =1

(a. single CSTR) to zero at N = « (piston flow).

EXERCISE 3-2: Repeat Exercise 3-1 for the transfer function
derived in Chapter 2 for the problem of a cascade of two tank
reactors with instant feedback. The L.T. of the function was
found in that exercise to be

c 2(1+B) 6 = a?

r(s) = ————— where a =
L. s?+2as+c T 1+

& (=20.

It is readily apparent that the foregoing equation equals
unity irrespective of B if s is set equal to zero. This there-
fore fulfille the reauirement for the zero moment of a transfer
function.

Ean. 3-5 gives a first moment of

dr(s) 2¢(a+s) _c2a _ = 1

- = lss0 = —(Sz+20.S+C)2 §=0 —C— 'Q'
when taken about the origin at t = 0. Note that the mean resi-
dence time is independent&?.

o
Likewise, the second moment taken about the origin is

d?r(s) 6C[Sz+2ds+§(4a2—c)] _ 2(4a’-c) S _ T°
ds? '°7° (s2+2as+c)’ e c? 2(1+R)
which gives a variance of (Ean. 3-4)
«  dPr(s) iy (1+2B)E"‘
— 2 = — = —
(3-6) g PP | sm0 T 1+B /2

Note that the variance of this model with feedback increases from
a minimum of two equal-sized CSTR’s in series with no feedback (B
= 0) to that of a single CSTR with infinite feedback (B=).
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CHAPTER 4
REACTIONS WITH BACKMIXING

4-1. DEFINITIONS

The chemical reaction rate k reflects the chemical kinetics
of a reaction system which is completely mixed down to a micro-
scopic scale if all of the reactants are present within the same

carrier fluid (homogeneous reactions); or if the rates are not
influenced by physical transport (diffusion and mass transfer) of
the reactants toward a reaction site, or of products away from
it, if these sites exist on particulates suspended in the carrier

fluid (heteroseneous reactions) (Kramer & Westerterp, 1963). The
actual conversion rate within a real reactor should thus be less
than the chemical reaction rate if the foregoing specifications

are not met.

The chemical reaction rate for a single reaction between 4
and B is
(4-1) r, = =-kciec
in which ca and cm are the concentrations of reactants A4 and B
respectively, kX is the reaction velocity constant, and ra repre-
sents the rate of chemical reaction for species 4. It 1s then
said that the reaction is of order a with respect to 4, order B
with respect to B, and order a+f for the total. It should be
pointed out here that the values of these orders do not necessar-—
ily have to be integers because certain kinds of catalyzed reac-
tions can vield fractional orders (Kramer & Westerterp, 1963).

Unlike chemical engineering, most reactions encountered in
water and wastewater treatment are very dilute and thus do not
affect the carrier fluid density significantly. We may thus
state that the relative degree of conversion t is

c
(4-2) g = I==t

C]a
in which ¢y is the concentration of the limiting reactant J. and
cso its concentration at the time of reaction initiation.

4-2. BACKMIXING EFFECTS

Backmixing (dispersion) may affect the degree of conversion
adversely as shown in developments given by Kramer & Westerterp
(1963) which are summarized below.

Suppose we have the n"th order reaction
r, = -—kcj
in two separate streams of equal volume V but with differing
reactant concentrations ¢°, and ¢’’,. If the two streams fail to
mix on a microscale then the conversion rate will be
VE[(c' )"+ (c’ "] = 2Vk<ci>
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If., on the other hand. the streams mix do mix completely on a
microscale then the concentration is (c'4+c’"4)/2 for each volume

with an overall conversion rate of 2Vk<c,>". These two rates
equal each other only when n = 1 (first order reaction):; other-
wise the "segregated'" condition will give a greater conversion
than that of "maximum mixedness" if n > 1, and vice versa if n <
1

The Completely Segregated Condition: Suppose the RTD-function is
known for a reactor system, and the nature of the reaction is
such as to remain completely segregated, then the rortion of
reactant A remaining in a fluid element which entered the system
T time ago is ca(T)/cao as in the case of a batch operation. The
portion of the outlet stream which contains elements of residence
time T is r(v)dt. Different streams having different residence
times T are combined at the outlet, however, so the average por-
tion of the reactant remaining in the outlet stream is

&

Ca

Tme

f[czi:):lﬂatchr('t) . d.c

=0

or

X = [ alpar (o) dr

Kramer 's Example: Kramer & Westerterp (1963) used the following
example to help clarify the foregoing.

Assume we have a PFR and CSTR connected in series as shown in
Fig. 2-2 of Chapter 2 with the RTD-function given by Eqn. 2-186.
(A reversal in the flow direction of @ is permissible.) Assume
also that we have a second order chemical reaction rate (ra =
—kcaZ2).

Maximum Mixedness: It may be easily shown by materials balances
(see Eqn. 1-8, Chapter 1) that the steady state conversion of
reactant 4 in the CSTR portion of the cascade is

c - ——jiL_-h—Jl+4kc E) in which E=K2'
4 2KC 41T, 5 Q

whereas that in the PFR portion of the cascade will be the same
as in a batch reactor (no dispersion) so that

Ca ; . V1
Caz = +——— in which =t,=—,
l+keqnT, Q

i. The flow @ is in the direction shown in Fig. 2-2. The
appropriate simultaneous solution of the two foregoing equations
gives the solution

E, = 1 + —L—T'(I-,\/l+4m)
2KC 45T 1 +kCa,




1i. The flow is reversed in Fig. 2-2 so that reaction mix-
ture passes first through the CSTR and then the PFR. The solu-

tion now becomes
1-«/1+41ccﬁ,,3€2
2kCp0Tz - kCapTy(1-y1+4ke t,)

Complete Segregation: Ean. 2-16 is discontinuous so that Eqn.

4-3 now becomes
_ | 1 -(T-,)/%,
§,1 f(]. ———1+kc“t)xeze dt

T

i = 1 =#

with the solution
e" Tl 1
g, = 1 - —F, () where z = ==+ =
KC 4 T» T, kCaTa

v
o

and
T =t LBy n
E(z) = f%—dz - —0.5772156649—1nz-2%
1 .

These solutions give three different degrees of conversion
for the same set of parameters. For example, 1f kc,t, = 2 and

T,/1, = 4 then

Maximum Mixednegs: Case 1. ¢, = 0.849
Case ii. t, = 0.814
Complete Segregation: t, = 0.864

The completely segregated reaction gives the greatest amount
of conversion because the reaction order is greater than unity.
For maximum mixedness, reactor arrangement i yields the greater
conversion because it maintains the higher concentration of the
two arrangements evaluated, and a second order reaction is
strongly concentration dependent.

Kramer s example shows that reactor performance is dependent
- except for the special case of a first order reaction - on the
extent of mixing of the fluid elements of different concentration
inside it as well as if the mixing occurs early or late in the
reactor relative to the mean time of passage. This kind of
information is not supplied by the RTD-function and so the degree
of conversion can only be evaluated within limits. In order to
obtain the exact answer, one would have to model the exact move-
ment and mixing of fluid elements through the reactor system, a
difficult task under the best of circumstances.

4-3. FIRST ORDER REACTIONS
Suppose we have a first order reaction (ra = - kca) so that

[cn(t)] - o
€ 4o Batch
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We know that the conversion effected by a first order reaction
can be determined by the completely segregated equation as well
as materials balances; thus from Egn. 4-3

Emoe

c _
(4-4) <£> - fe r(t)-dn
Ca :
=0
This formulation is identical to that used to determine the L.T.
of the RTD-function of a reactor if the reaction velocity con-
stant k is replaced by the complex variable s; consequently, the

substitution of k& for 5 in the expression for r(s) gives
automatically the steady state conversion effected by a first
order reaction within the reactor system.

EXERCISE 4-1: Determine the steady state ratio of the effluent
to feed concentration for a first order reaction occurring within
the following types of reactors: i). a PFR and CSTR in tandem;
ii). a CSTR cascade; and iii). a cascade of two reactors with
feedback.

i. Ean. 2-15 of Chapter 2 gives the following L.T. of the RTD-
function;

r(s) = exp-r,s( 1 )

1+7T,s

Coaz 1

=AZ i -k —

<C,ﬂ> exp Tl(l"'ktz)
ii. From Egn. 2-18,

F(s) - (l-hii)-” hence <Eﬁ5> - (l-bﬁi)-N.
N Ca N

iii. From the expression leading directly to Egn. 2-24 in Chap-
ter 2,

Consegquently,

2 +
za. = where Q-M
(1+B)(s*+2as)+a T

B is the ratio of the feedback to input flow. Hence,

and

r(s)y =

5 - ‘
Ca kT[l+kT/4(1+B)] + 1
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CHAPTER b5
PERMEATION OF SOLIDS

5-1. BARRER"S EQUATION

Let a ribbon of plastic be exposed at a constant temperature
to a constant wvapor pressure p of a volatile organic chemical
(VOC) (see Fig. H5-1 below). The gain in weight with time of the
ribbon is often determined by a microbalance and evaluated with
the aid of Barrer s equation (Barrer, 1951).

|
' == - Vapor, vy

Vapor, vy

Flux | Flux

PIastLo: Sheet

Fig. b-1
Derivation: The total rate of mass flux of a VOC into the plas-
tic is

am dc

Flux = At = (2As)Du'Hlx-uz

in which ¢ is its concentration within the polyvmer, m is the
total mass of the VOC permeated into the polymer sample, L/2 is
the half-thickness of the ribbon, As is the area of one side of
the ribbon., D~ is the Fickian coefficient of molecular diffusion
of the chemical through the polymer, and the concentration gradi-
ent specified is that at the gas-so0lid interface. The concentra-

tion of the VOC in the plastic at the gas-so0lid interface c. is
determined by the partition equation

(5-1) c. = K-y

in which y is its concentration in the gas phase (y = p/RT) and K
a coefficient.
Now
d(m/m.) df, 2Du dc
dt dt ¢l dx"""2

because the total mass of VOC gained at full saturation m. is
c.AslL. The overall fraction of polymer saturation is fs = m/m..,
and the foregoing simplifies to



dfs 1 dc . Dut
Ell - e hich 0= .
a6 B een M ehile (L/2)? 25172

in dimensionless coordinates. Operation 6, Table I mayv now be
used to obtain the L.T. of the foregoing expression: i.e.,

SFUs) = fu0) = =T

|z-l =

Next., we must solve the partial differential eguation

5-2 s T
( ) dab az*

based on the following boundary conditions (BC) in order to
determine the concentration gradient at the gas—-solid interface.

b The polymer sample is free of the VOC at time zero so that e
and fs = 0.

ii. The concentration c. of the VOC in the plastic at the gas-
solid interface is always proportional to y as shown by Eqn.
5-1.

iii. Concentration symmetry across the plastic slab center dic-
tates that de/dz = 0 at z = 0.

iv. The concentration of the VOC vapor in the microbalance is
increased from zero to ¥ instantaneous at time zero (a step
input).

BC #i then gives

1 1 dC(s)

(5-3) F.(s) = E:'E'—TE;—I*“

for Barrer s equation as well as the following L.T. of Egqn. 5-2
with respect to time;
d2c(s)
dz?

- sC(s) = 0.

Taking the L.T. again with respect to =z gives
u-C(0,8) + dC(s)/dz|,,
u-s

C(u,s) =

in which v is used instead of s to designate the complex wvariable
in z, and C(0Q,s) represents the L.T. with time of the concentra-
tion at =z = 0. (Note that whilst dependent on time, &(0,s) is
independent of =.)

BC #iii1 stipulates a zero concentration gradient at z = 0
which reduces the foregoing to

U
S-4 C(u,8) = C€(0, . 3
= Lai O T 1)
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This function possesses two simple poles at u = #J_; hence.,
either Egqn. A-3 or A-4 of Appendix A can be used to obtain the
following inverse of u:

OMBET !

(5-5) C(s) = C(O.8)—F—= = €(0,s) coshysz.

BC #iv and Transform Pair No. 2 of Table II combined with setting
Zz =1 in Eagqn. 5-5 gives

CCl.s) = C(0.8)-coshys = —

s
so that

(5-6) c(s) _ l'goshﬁz.
Cw s cosh.ﬁ

This is the s-domain solution for concentration within the plas-
tic sheet.

Taking the derivative of Egn. 5-6 with respect to =, setting
Zz = 1 and then substituting the result back into Egn. 5-3 gives
the following s-domain solution for Barrer’s equation;

1 sinhys
5-7 F(s) = —m 2
( ) () s%% coshys

Inverses: Ean.e 5-6 and 5-7 are irrational as written. Some-
times, however, one is lucky enough to be able to expand such
functions into an infinite seriee which then can be inverted term
by term. For example, writing Ean. 5-7 in ites exponential form

gives ‘
eff-o " (1-e72?

sazz(gﬁ+ejﬁ) = sal’z(l—e"ﬁ)

F.(s)

or
1 =~ 1yrg
RO Sy

upon expansion into an infinite series with the aid of the bino-
mial series (Burington, 1949). An extensive table of Transform
Pairs such as that of Roberts & Kaufman (1966) shows that

A 1 2]
LY — - 2.0
[sm] | \/_r-t
—Zuﬁ e
L-ll:e 3/2] - 2\/——-'e"‘2'° - 2n-erfc=
s n Jé

in which erfc x is the complimentary error function of x (refer
to Abramowitz & Stegun, 1966). Summing up each term in the
geries then gives one form of Barrer’'s egquation; i.e.,

and
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- - 6 9_.._u-uz/o_ -_u_ n
(5-8)  f, 2[= + 4 n,.z.( 1) 4;(.1” PEfici

Another solution to Eqn. 5-7 can be obtained by expanding the
periodic functions of JE into infinite products to obtain

G0 +s/(ono)

n=1

gd/2 ﬁ {1 +4s/[(2n - I)an]}
n=|

Fo(s) =

This proves that Egn. 5-7 is actually rational and possesses a
gimple pole at 5 = 0 as well as an infinite number of simple

poles sn at -af = -(2n -1)2n%/4. (Remember that these poles also
are the zeros to cosh JE.)
The residue at & = 0 is (Ean. A-3 of Appendix A)

g 2 2
-0y LUrerety

- . e -
[ T<1+4s/1(2n-1)202]}
n=1

res g(0) = lim

§-00 S

Also from Egn. A-4,

P(S) .o 2sinh s i
res s = ——p o - = re -s
SR AR 7 R R o ey - P
25ith§ +50
———e |

s-ﬁthE
The sum of all residues then gives another version of Barrer s

equation;

s=5,

2
_2 e
n

b

a;-exp—afe in which a,=(2r-1)n/2.

(5-9)  f, = 1 - 2)

Ean. 5-9 is shown plotted against JE in Fig. 5-2, with the
portion less than a fs of about 0.55 vielding a straight line in
accord with the first term of Ean. 5-8; hence,

(5-10) £, = V\/g-\/ﬁ when £, <0.55,

Just the first term of the series given by Egn. 5-9 also suffices
for a fe > 0.55, or :

8 -n2g
(5-11) fo ® 1 - Z.exp

> 0.585,
& 2 when fs




EXERCISE 5-1: Invert Ean. 5-6 via the infinite products
approach.

Expanding the periodic functions in JE into infinite products
quickly shows that Egn. 5-6 and 5-7 possess identical rational
poles — one at & = 0 and an infinite number sn at a2 = —(2n-
1)2n%/4. Additionally, the residues at 5 = Q0 equal plus unity in
both cases.

The n th residue for Ean. 5-6 ie (Ean. A-4 of Appendix A)
2cosh Ez wo | 2coshia,z e‘“fu

res S I :
g(sa) 2coshJ§ + E-sinh,f; n ia,*sinhia,
2c080,2 -a COSO,2Z -a
g e HSOas FRG 2(-1)" o 2ne
a,sina, o,
thanks to the fact that sin a, = —(-1)1. The sum of all residues

then yields the inverse

(5-12) L -1+ 2-5i(—1)"

Ca ="

2
-cosa,Z-exp-a,Ld

in which 6 = Dmt/(L/2)2 and a, = (2n -1)n/2. Plots of this
function are shown in Fig. 5-3.

Note:r Developments paralleling those presented here are spelled
out in Appendix B for a slender rod, and for a sphere.

5-2. MODIFICATION OF BARRER"S EQUATION

Bontoux (1990) investigated the permeation of pipe grade
polybutylene by several volatile chemicals using the microbalance
technique. Instrumentation available at the time made it impos-—
sible, however, to deliver the VOC vapor to the microbalance
chamber rapidly enough to duplicate a step input at time =zero.
Rather, the input forecing function varied with time in the manner
shown Fig. 5-4, which necessitated a modification of Barrer’s

equatfgﬁf\ﬁl <;
N

o) AN\
A Sub tract

p u rac
& s oy P AN

i |

: |

i |

| |
93 ki . 95 o g

(a) (b)
Fig. 5-4

The derivation presented herein duplicates in all respects
that of Section 5-1 except, of course, for BC #7iv which defines
the input function. The revised discontinuous input necessitates

a two-stage approach.



I. 0<8<9,: The derivation of fa within this region is identical
to that of Section 5-1 up through Eaqn. 5-5. The forcing function
is now

which has a L.T. of (see Transform Pair No. 10, Table II)

C(l,s) = iz.c = ((0,s)cosh{s.

s? 8,
Egn. 5-5 now becomes
(5-13) cs) = =
=1 S = _t-—l_.
0, s? coshys

Also. performing the same mathematical manipulations as uti-
lized in the previous section, the fs function becomes

1 sinhys
S-14 F.(s) = : .
( ) () 8,5%% coshys

Inverses: As shown by Operation No. 9, Table I, the integration
over time of Equations 5-8 or 5-9 will give the inverse of Eqn.
5-14 after dividing by the constant 0,. Thus, for Egn. 5-8
(first term only)

e

ars2
(5-15) f. = J_ie-fu“zdu - 3—4—J_-"—6— when @<e,.
1A L k| t

0o

Utilizing the same approach, Ean. 5-9 gives

6 S ap
(5-16) fo @ = = -Z—-Z—lzcl—exp—aﬁe) in  which 6=—=%¢,
8, 0, s n L
4D
9,=L—2“t,. and a,=(2r-1)n/2.

Comparison of Eqn. 5-15 with 5-16 at @=0, shows that the
former is accurate to within 1% at a fo of 0.52 op less.

II. ©>0,: Fig. 5-4 (b) shows that in this region all that one
has to do to obtain the inverse of Ean. 5-14 is to extend the
inverse solution for the first-stage indefinitely, and then sub-
tract the same function from itself after a time delay of 6-9,;

i.e., Egn. 5-15 gives
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B

w
?-
Gl

JELE -0 8,)°%]

[ 1]

(5~17) Py

and Ean. 5-16

-1 !
(5-18) Fo o= 1 - -g--z—j-[exp—a,f(e—et) - exp-a®@]

9, aiq,
after the rearrangement of some terms. Ean. 5-17 should not., of
course, be trusted much above half-saturation.

The solutions given by the foregoing expressions for 6, =
0.09 and 0.25 are compared with Barrer’s Egn. 5-9 in Fig. 5-5.
Note that the time lag ©, increases the time to half-saturation

significantly.

EXERCISE 5-2: Bontoux (1990) used a microbalance to determine
the increase in weight of a piece of polybutylene water pipe
exposed to the vapor exerted by the pure ligquid of n-nonane (ac-—
tivity = 1.0) at 20oC. The results shown plotted against the
gsquare root of time in Fig. 5-6 reflect the effects of the time
ti required to develop fully the vapor pressure within the micro-

bhalance chamber.
Match the observed data with the modified Barrer '8 equation.

Bontoux (1990) devised a two point scheme to determine the
unknowns consisting of the time to half-saturation Jt”z and the

maximum vertical distance Af, between line (a) of Fig. 5-6 and
the sag in the plotted data (10.3 hil 2 and 0.11, respectively).
Its derivation is too lengthy to be repeated here, but it yielded

a value of 0.0516 for 6, as well as

2 2
q’G,,z = 0.472 = Zg}Du,/t“z - Zm.log
so that
%,/D,, - 0.0458h°Y%2 and J8 = 0.0458t

with ¢t in hours. The observed data may now be compared directly
with the modified Barrer s equation as shown in Fig. 5-7.

There exist discrepancies. The polybutylene specimen gained
weight too rapidly at fe > 0.6 which in turn was followed by a
period of quasi equilibrium and then a slow additional uptake to
a final true equilibrium. This anomalous type of diffusion
behavior is tvpical for non-glassy polymers such as polybutylene
exposed to high external VOC activities (Crank & Park, 1975).

Bontoux (1990) found that the anomalous responses disappeared
in the polybutylene at VOC activities of 0.6 to 0.8 or less,
depending on the chemical, but that the apparent diffusion coef-
ficient D decreased with the external n-nonane concentration in
accord with the exponential expression

(5-19) D,(m?/day) = 2.0x107°7-e>* at 20°C
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in which a is the activity of the n—-nonane surrounding the poly-
butylene. Thus, I = 6x10-7 m2/day at a m-nonane activity of
unity. Note, however, that the VOC will continue to rermeate
through the polymer even at very low activities.

5-3. DESORPTION

Little, Hodgson & Gadgil (1994) investigated the desorption
of volatile organic compounds from new flocor coverings such as
vinyl tiling and plastic backed carpets into a ventilated air
chamber as shown in Fig. 5-8. The permeation characteristics of
a VOC within the floor covering were determined by monitoring its

concentration ¥ in the air.

) VYeper Conc. y tn Alr
yi= B ¥
Alr 1 V —— A
Q
¢ A3
x4 Of}
Fig. 5-8

Two assumptions made by the investigators were that the gas
phase is completely backmixed within the chamber (i.e., a CSTR),
and that there exists no significant gas phase resistance to mass
transfer so that the partition equation

(5-20) c, = K-y

is always valid. They also postulated the following boundary

conditions (BC):

I. The initial concentration of a VOC within the plastic layer
of the floor covering is distributed uniformly throughout so
that ¢ = co at t = 0.

ii. The bottom of the chamber is impervious to a VOC so that
) dc
= 0,

dx Ix-o

iii.The air within the chamber contains no VOC at time zero 80O
that y = 0 at ¢ = 0.

iv. The air entering the chamber is always fresh so that y1 = 0.

The Solid Phase: The permeation of the VOC through the plastic
was evaluated with a partial differential equation equivalent to

ac d%c Dyt x
= S U e - hich Sl =
(5-21) 30 322 in  whic ] IE & =z 7

which in turn yields a L.T. with respect to time of
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2
d—c?cg(-f—)- = g:C(s) - ¢,
after observing BC #i. Taking the L.T. again with respect to
distance together with BC #1ii gives

Clu,s) E0L6) ——=. = L
’ Tlut-s u(u?-s)
which has the inverse
(5-22) c(s) = % ~ ¢, éoshysz + C(Os)-cosh{sz

in which €(0,s) designates the L.T. with time of the concentra-
tion at z = 0. This unknown can be transferred to z = 1 by

setting z = 1 so that
sy - C,
C(0,s - — + - —_——
( ) coshJE a s-coshJE

followed by substitution back into Egn. 5-22. Finally, taking
the derivative with Zz and setting z = 1 gives

dC(s) , C, thJs ; Jsmths
5-2 pradonc\ bt/ g Wil . ; e
( 3 dz ! © Js coshys * £o¥(e)CLe) cosh ys

after combining with the L.T. of Ean. 5-20; i.e.,

C,(s) = K- Y(s5).-

The overall loss of the VOC from the plastic layer is of
practical significance. This can be determined employing the
same methods as used previously in this chapter so that

d(m/me) _ dfy _ _lde
ae ae c‘,dzl"'l
in which me is now the mass of the VOC released from the layer,
Mo = colel, and fe = me/mMo is the fraction of the VOC desorbed.
As a result of BC #1, fo = 0 at time zero, and the L.T. of the
foregoing equation with respect to time gives

1 1 dC
(5-24) Fs) = == =8

The Gas Phase: One can now use Ean. 1-8 of Chapter 1 to obtain a
materials balance about the air chamber assuming that it is com-
pletely backmixed. The result after consideration of BC #iv
gives

dy, . 9, . Zufsde,

at i v dx *
in which V is the air chamber volume, @ is the volumetric airflow
rate, and 4= the surface area of the plastic layer exposed to the
air. (A minus sign was attached to the concentration gradient
term at x = L because we are considering here the opprosing gas
phase). Expressing the foregoing expression in terms of a dimen-
gionless time and distance, one obtains



dy ldc
da iy Kdzl""
. . Q+L V.
h - -—
in whic h AD.K and &k IA.K

Finally, taking the L.T. of the foregoing with respect to
time and utilizing BC #i7i, one obtains

dC(s)I
dZ z=]1

The s-Domain Solutions: Solving Eqn.s 5-23 and 5-25 simulta-—
neously for ¥(s) gives | i
C, 1, sinh {s
K Js (h+ks)coshys + Jssinhys
Solving the same two equations simultaneously for the concentra-
tion gradient at the gas-water interface gives

SdE(s), G, _(h+ks)sinhys

dz = Js (h+ks)cosh{s + {ssinhys

which upon substitution into Egqn. 5-24 yields
1 (h+ks)sinh{s
s%® (h+ks)coshys + 4ssinhys

~K-Y(s) Ch+ks).

(5-25)

(5-26) Y(s)

(5-27) Fo(s) =

Inverses: The expahsion of Egn. 5-26 into infinite products
gives :

I_[[l+s/(n2nz)]
(o 1
K

(h+ks) [ [ {1+4s/[(2n-1)2n%]} + s [ [[1+s/(n?n?)]
1 1

which shows that this function is rational, and that it has no
pole at & = 0. It does possess an infinite number of simple
negative poles which cannot be formulated directly in the manner
employed for theé previous casee covered in this chapter. We
will, however, use the same general approach to convert them to

rogitive poles; i.e., for the n"th pole let s5a = -aZ go that

J;:-iau.
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The infinite number of simple poles can be evaluated by set-
ting the denominator of Ean. 5-26 equal to zero, or
(h-ka?)coshia, + ia,sinhia, = O

which gives

isinhia, sina, .
—_—t - - -(h-k
*n Cash ia, "cosa, ( %)
so that
(5-28) a,tana, = h-ka®

Note that iterative numerical procedures are required to derive
a, even when A and k are known.

The n th residue of Ean. 5-26 can be now obtained with Ean.
A-4 of Appendix A, or

Co ia,sinhia, - g
res (s,) = 2—- f—— - s ——
K (h-3kai-aZ)coshia, + (2+h-kap)io,sinhia,

2c,, a,tana, e
K (2+h-ka2)a,tana, - (h-3ka?-a?2)
Ean. 5-28 can now be used to simplify further the residue. The
final solution for the sum of all residues is

a?a

Zc,i (h-kaZ).-e ™
K Sith-ka2)2+(1+k)a2+h

Dy
(5-29) y = where 9--L—2-t

which parallels that given by Little, Hodgson & Gadgil (1994).

The identlcal procedure may be used to obtain the inverse to
Egqn. 5-27 except it does possess a simple pole at s = 0 which can
be easily shown to have a residue of plus unity. All of the
remaining poles are identical to those obtained for Eqn. 5-26.
The final solution is

5 (h-ka2)? e ™
SaZ[(h-ka?)®+(l+k)a2+h]

(6-30) fo = 1 =

EXERCISE 65-3: Use the following data reported by Little, Hodgson
& Gadgil (1994) for the desorption of ethylbenzene from a newly
manufactured carpet to derive plots of Ean.s 5-29 and 5-30.

V= 20m3; As = 8.8m2; @ = 20m2/hr; thickness of carpet’s
plastic backing L = 1.2bmm; ¢o = 560mg/m3 of ethylbenzene; I
= 4.3x10-12 p2/g; and K = 2400. These data give values of 76
and 0.76 for Ak and k, respectively.

The concentration y in pug/m2 of the ethylbenzene in air as
predicted by Ean. 5-29 is plotted against the square root of time
t in hours in Fig. 5-9. Concentrations prior to the peak at
about one hour are not shown because more than 50 terms were
required to obtain convergence.
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The results obtained from Ean. 5-30 are shown in Fig. 5-10.
The rate of convergence of thie egquation is superior to Eqn.
5-28. The surprising thing, however, is that the plot looks very
muach like Barrer s equation for a slab despite the variable con-
centration y in the air; i.e., the fraction fe of ethylbenzene
desorbed from the carpet was directly proportional to the square
root of ¢t when fe < 0.55.
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CHAPTER 6
DISPERSION IN PIPES & TUBES

The axiallv-dispersed plug flow egquation

a<c> d2<c> d<c>
6-1 - F —— = <y>
( ) at L 3x? V7 %

is commonly used to describe turbulent dispersion within straight
pipes and tubes in which <c> represents concentration averaged
over the cross—sectional area Ax of the tube at a distance X from
some origin, ¢ is time, and Er is known as the coefficient of

longitudinal dispersion. Additionally, <v>= @/Ax in which <v>

represents the average flow velocity within the tube and & is the
volumetric flow rate (steady) through the tube. i

6-1. TUBES OF INFINITE LENGTH

Assume that the tracer extends uniformly at a concenﬁration
of co for x < 0 to and at minus infinity at t = 0, and a zero
concentration for x > O to and at plus infinity. The concentra—
tion <c> after a given time ¢ is (Kramers & Westerterp, 1963)1

(6-2)
x—-<u>t

t
gep o L) a2 _u? - - o fTue
> 2[1 ﬁ[exp( u )du} 2[1 erf(t)] where § JZE_,_t ;

Setting x = L at some fixed point of interest in the tube (a
sample collection point, say, or the distance to the end of a
tube discharging freely into the atmosphere), one obtains

3 1 i.l—t/f
R(t) = 3 1 -erf ﬁ/ > __J't/_i

in which R(t) represents the integral of the r(t) function (refer
to Egn. 1-2 of Chapter 1), t = L/<v>, and N'= <v>L/2Er. Conse-
quently,

AR | Ly = _lderf@®), . dt,

dt 2 dg *bodt'*th

or

1 Laplace Transforms, as defined herein, cannot be used to solve
completely unbounded problems. Special transforme do exist for
guch a purpose but they seldom are used.
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- 1 1+t/8 © (1-t/D)?
(6-3) tr(t) = Zn\/-( :/t ) p[—]—vz—-_—-—(1 t/tft)J

in which f=L/<u> & N’=<u>L/(2E)).

Moments of the r(t) function: According to Levenspiel (1862),
this RTD-function has a first moment about the origin of

(6-4) T = E'(“R/I'—')

and a variance of

2 1 2
=l 2 - 2 — —
(6-5) g t(N’ N'z)
in which # = L/<v>. Note that for the first time we have encoun-
tered a reactor problem where the mean residence time T does not
equal /@ = L/<v>. Why not?

Plots of Egn. 6-3 are presented in Fig. 6-1 (attached to the
end of this chapter) for values of N~ ranglng from 1/2 to 32

6-2. PARTIALLY BOUNDED TUBULAR REACTORS
A sketch of this reactor follows:

- <C?,

Q— == i

Fig. 6-2

The Laplace Transform technique may now be used to derive the
r(t) function for this reactor because it is bounded at both x &
t = 0. The boundary conditions (BCs) are: '

i. No tracer exists within the reactor at t = 0 so that <¢> = 0
throughout.

A a<c>

il. <v>c, = <u><c>, - E}—EE—I”O at x=0.

iii . <> must remain flinite as x>,
The L.T. of Egn. 6-1 with respect to time gives

2
d°C(s) _ <U>dC(s)
dx® dx

sC(s) = E,

after making allowance for BC #i. (Note that ((s) is used herein
to designate the L.T. of <¢> with respect to time.) Allowing u
to represent the complex variable of x, taking the L.T. of the
foregoing again with respect to distance as well as BC #ii gives
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C(u,s)-(s—E,_uz+<u>u.)a - Co(s)(—E;u+<u?) = EL%S—)|,,_°
and
5,3 - cuscs) - <> Cols)
dx '
which upon solving simultaneously yields
<y> , _ <u> 1 -
C(u,s) [uCo(s). E. C}(s)] [u E, u ELS]
<v> _
= (uCo(s) - 'ch‘(s) /{(u+a)(u+p)l
: . <vu> <u> 4E,
in which a 2E,_(1+Q)' B 25,_(1"?_) & q 1+<v>zs.

Inverses: Procuring first the inverse with respect to distance.
one may see that the foregoing function has two simple poles at
—~a and -B. It may thus be inverted by the Method of Residues

(Appendix A) to obtain

(1+q)Co(8)-2C(s),
2q

(1-g)Co(s)—-2C(s) <v>
2q -expzi?z(l—q)x.

<v>
(6-6) C(s) exp ZEL(I +q)x

Keeping in mind that g 2 1, it may be seen that BC #iii will be
fulfilled only if

(1 I"'QJCOCS) = 2C(8).
Additionally, the L.T. with respect to time of the input function
Ci(s) must equal unity to obtain the r(t) function, and x is set
equal to L to remind one that r(t) is determined over time at
some fixed point of reference. Ean. 6-6 then becomes

(6-7) F(s) = ——-exp[N’(1-g)] in which Lkl
1+g p q 2F,
Operation 5 of Table I may now be used to simplify the fore-
going significantly prior to obtaining its inverse with respect

to time, or

<vu> <u>t =5 1 5
- —N' 11- . exp-N'qs|.
r(t) - exp[N (1 = )] L [1+J§ P J—]
(Note that s is now dimensionless-because it repreésents the L.T.
of the dimensionless time <v>2t/(4EL).) The completed solution

can be obtained from Transform Pairs tabulated by Abramowitz &
Stegun (1966) as well as others to obtain the ultimate solution
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ey Ty o PN [ N8 e N (0+1)
(6-8) T-r(t) L exp[ e ] N erfc[,‘/z ﬁ]

in which & = L/<v>, 8 = t/f and N~ = <w>I/(2Ez).

Moments of the r(t) Function: These can be obtained directly
from Egn. 6-7 following the instructions given in Chapter 3. For
example, setting s = 0 in the equation makes g = 1, which in turn
vields a zero moment of unity as proscribed for a r(t) function.

Egn. 6~7 also gives a first moment about the origin of

= i 1
(6-9) T = t_'(l""’z'}\?j)
and a variance of
-af 1 3
- z a2
(6-10) o t (N’*4N'z)

in which £ = L/<v>.
Plots of Ean. 6-8 are presented in Fig. 6-3 for the same
values of N” as used in Fig, 6-1.

6-3. COMPLETELY BOUNDED TUBULAR REACTORS
A sketch of a fully bounded reactor of overall length L fol-
lows:

ot — <O>D
Cs o X — ey Cy
Q — - = — » (]
g L &
Fig. 6-4

Two of the three boundary conditions for thles reactor are identi-
cal to BCs i & 11 of the partially bound reactor evaluated in
Section 6-2. The BC appropriate for the exit at x = L generated
much speculation in the 19508 with the one postulated by Dank-
werts in 19563 eventually being accepted: to wit

d<c>

dx

which ensures that no sudden discontinuity in concentration
occurs at the exit of the reactor.

The derivation follows in all respecte that made previously
for the partially bound reactor up through Ean. 6-6, repeated
here for convenience.

= 0 at x=L

i,

(1+g)Co(s)-2C,(s) <vu>
(6-6) C(s) = 2q 'exszL(1+Q)x

(1-9)Co(s)-2C(5) <v>
2q exp 2_1:',_(1 g)x.
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Taking the derivative of Egn. 6-6 with respect to x, and then
setting the result eaual to zero at x = L as specified by BC #ii11

above gives
' (1+g)-e"?-(1-g)-e”"
(1+g)%e"" 7 -(1-q)%e™"
which upon substitution back into the equation yields

(6-11)

Co(s) = 2C(s):

C(s) zen'xu..(1+Q)‘5XP[NIQ(1"3¢/L)] = (1-g)-exp[-N'g(1-x/L)]
Cu(s) (1+g)’expN’q - (l-g)?exp-N'g

) ) 2L - , <u>L

in which g 1+<v>N’s & N oF,

Assuming that we are concerned only with the r(t) function at
the exit of the reactor, Ci(s) is set equal to unity and x equal
to L in Ean. 6-11 to obtain

4q
(1+g)*+-exp-N’(1-q) - (1-g)*-exp-N’(1+q)
. 2g-expN-
(1+g*)-sinhN’g + 2g-coshN‘g’

(6-12) r(s) =

Moments of the r(t) function: Following the instructions given
in Chapter 3, it can be shown that the moments of Egn. 6-12 in

real time are

(6-13) T = L/<y> = V/Q
for the first moment taken about the origin, and

_ 2 = -2 _1__: 1 — -2N’
(6-14) g T[N, 2N’2(1 e )]

for the wvariance.

An Inverse of Egqn. 6-12: Operation b of Table I gives
(6-15)

Tor(t) = N’expN'(l-L_)L'l[ - s ]
27 (1+s)sinhN’{s + 2{scoshN'{s
in which s now represents the L.T. of the dimensionless quotient

N t/(2T). Note that the portion of the foregoing equation
remalning to be inverted resembles Egn. 5-27 of Section b-3
(Chapter 5), and so can be inverted using the same techniques.

Expanding the periodic functions of the portion remaining to
be inverted into infinite products shows that it possesses no
pole at 5 = 0, and an infinite number of simple negative poles.
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Following our established convention, let sn = -a2 so that

JE; = ia,. The zeros equation, obtained by setting the denomi-
nator of the s—-domain function equal to zero, thus becomes
' 2a,

(6-16) tanN’a, = e

in which «, is now always positive.

Eagn. A-4 of Appendix A can now be used to determine the n"th
residue

25 esN'uz?

[N'(1+S)+2]COShN’4jE -+ ZJ-E(I.'.N')SinhN'JEls-—u%

res g(s,) =

-aiN8/2 ,
- =2a2-2 ™" "*/cesN’a,

N'(l-a®)+2 - 2a,(l+N’)tanN’a,

in which 8 = ¢/t. The substitution of the zeros obtained from
Eqn. 8-16 into the foregoing plus summing up all residues and
including the additional terms already inverted, one obtains

= .= 2a2(a2-1)secN’'a, exp[-N’'(aZ+1)8/2
@=17) Torgy = §T) onGend) seelia, Rl Ao PAR)
=1 N (a2+1) + 2(aZ+1)

Unfortunately, the secant appearing in the numerator of the
foregoing equation generates an alternating plus-minus series.
This creates no difficulty when the convergence is quick at a N~
of about eight or lees as indicated in Fig. 6-5, but it does as
the number of terms required for convergence increases at a N~
much in excess of eight because the greater the number of terms,
the greater the need for accuracy in the lead-off terms. Eventu-
ally, this need exceeds the abilities of most personal computers
or hand-held calculators. This is the reason why only the
portion of the »(t) in excess of 8 = 1 is shown in Fig. 6-5 at N~
= 32.

Commentary: It is readily apparent from the equations given for
the moments of the r(t) functions that
-2

'C")<v—> V/zQ & a _)IT
as N'»o (E,»0). This is supported by the curves presented in
Figs. B-2, 6-4, & 6-5, with all three dispersion models discussed
herein seemingly vielding nearly identical r(t) functions at N~ =

32.

Expansion of the exponential term of Ean. 6-14 for the com-—
pletely bounded tubular reactor into an infinite series gives

’ 2
o = gz(l_ﬁ,+%_...),
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It ie now apparent that as N’=0 (F,~») that 42,73 or the vari-
ance of a single ideal CSTR. If, on the other hand, Er. = O B0
that N°~ is infinite, then Egn. 6-14 gives a variance of zero;
i.e., ideal plug flow. The Dankwerts”~ boundary conditions thus
lead to a continuous transformation from a single CSTR to plug
flow. ;

First-Order Reactions: It was demonstrated in Chapter 4 that
the fraction remaining of a substance undergoing a first-order
reaction in a reactor operated to steady state can be determined
by substituting the first-order rate constant k for s in the L.T.
of the reactor s r(t) function. Egn. 6-7 thus gives

<c> 2 i
q~exp[N (1-g)]

G=ia) = T Ts

for a partially bounded tubular reactor, and Egn. 6-12 shows that

(6-19) G5 o _ : 49 . :
Ce (1+g)2exp-N'(l-gq) - (1-q)exp=-N’(1+q)

for a fully bounded reactor in which

<u>L 4K, ol =
N' - - - —
2F, and q "’I+<u>2k ﬂ/1+N,(kt)

where t = L/<v>.

6-4. OBSERVATIONS OF LONGITUDINAL DISPERSION

A dimensionless Peclet Number Per is commonly used to report
the results of dispersion measurements made in long pirelines
approximating the infinite tube of Section 6-1 herein; i.e.,
<vu>d,

E,
in which des is the inside tube diameter. The observed Per num-
bers are then correlated against the observed Reynolds Number

Pe, =

<u>d,
v

as in Fig. 6-6 in which v is the kinematic viscosity of the
fluid. If the flow is laminar then the Schmidt Number

Re =

X

Dy

must also be known in which Dm is the coefficient of molecular
diffusion of the solute in the solvent, or the self-diffusion
coefficient of the solvent itself. Note that an equation relat-
ing the Peclet Number to the Reynolds and Schmidt Numbers in the
laminar flow regime is also given on Fig. 6-6. Finally, the PeL
ig related to the dispersion number N~ by the following:

Sc =
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2F, 2 \d, /)

(6 - 20) N - Su>L Ph([)

Fig. 6-6 shows that the longitudinal dispersion coefficient
Er increases as the Reynolds Number decreases from fully devel-
oped turbulent flow to laminar flow. The radial velocity gradi-
ent is the primary cause of the increase in dispersion, and only
the relatively slow process of molecular diffusion can generate
flux in the radial direction in laminar flow; hence, the inclu—
sion of DM in the dispersion correlations shown in the figure.
The radial flux resulting from the turbulent eddies is much
greater in turbulent flow, and the mean radial velocity gradient
is reduced considerably.

The inclusion of elbows in a tubular. reactor increases the
apparent longitudinal turbulence. According to one 1969 study
reported briefly by Sherwood, Pigford & Wilke (1975), series of
90° elbows in a 11/4-in line increased Er. by 8 to 61%.

EXERCISE 6-1: Water @ 20oC flows through a 20-cm I.D. straight
tube. Determine the Er and N  of tagged water molecules 5 meters
from the inlet at mean flow velocities of 10 cm/s and 0.5 cm/s.

v = 1 centipoise @ 20oC.
Dy = 2.2x10-5 cm2/s for the self-diffusion coefficient of

water @ 20°C (Sherwood, Pigford & Wilke, 1975).

For <v> = 10 cm/s: Re = 10x20/0.01 = 2x104 (turbulent flow).
From Fig. 6-6 Per—1 = 0.42. Thus, Er. = (<v>ds)Per—1 =
10x20x0.42 = 84 cm2/8 & N~ = (Pen/2)(L/ds) =
(1/2)Y(1/.423(500,,20) = 30.

For <v> = 0.5 cm/s: Re = 0.5x20/0.01 = 1000 (laminar flow). Now
S5c = 0.01/2.2x10-5 = 455 and from the equation given on Fig.
6-6, Per—1 = (1000x455)-1 + (1000x455/192) = 2370. Thus, ErL
= 0.5x20x2370 = 23,700 cm2/8 & N~ = (1/2)(1/2370)(500/20) =
0.0053.
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CHAPTER 7
FIXED-BED REACTORS

_Ion exchange and activated carbon absorption, are two examples
of processes performed in fine particle fixed-bed reactor;columns
of the following style. - ;

¥
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(a) A . s (b)
Fig. 7-1
The average interstitial velocity vw of the fluid flowing
through the particle bed of the column is
: . . . )

€Ay €

(7-1) | ' v, =

in which & is the total rate of fluid flqw through the bed
(steady), Ax is the cross- sectional area.of the column, v is the
approach velocity, and € is the fractional void space within the
fixed-bed. '

The 1nterstit1al V51001ty will actually Vary across the col-
umn as shown,in Fig. 7-1(b). It will peak at about one particle
diameter from the column wall (the wall effect), and it will
exceed that at the center of the column by 100% or more if the
column to bed particle diameter ratio is considerably less than
30, or by less than 20% if the ratio exceeds 30 (Denbigh, 1965).

-Apparent dispersion of the fluid elements within the bed
results from the obstruction to flow of the bed particles as well
as the wall effect. The apparent dispersion in the longitudinal
direction always exceeds that across the. column (Denbigh, 1965:
Kramer & Westerterp., 1963), ‘and observed values of the longitudi-
nal dispersion coefficient Er are presented in Fig. 7-2 for col-

umns packed randomly with uniform spheres.
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7-1. MASS TRANSPORT EQUATION

The axially dispersed plug flow equation (refer to Egn. B6-1
of Chapter 6) is commonly used to depict mass transfer in the
fluid rhase. The nomenclature of Egn. 6-1 must be revised, how-
ever, to fit the case of a fixed-bed reactor, or

dc 2% % ac
(7-2) 5—£ El':t? UO'E.

THe number of transfer units N~ as defined for Edan. 6-3 must also
be modified along with the Reynolds and longitudinal Peclet Num-
bers so that

vy L
N* = 2=
E,
v,d vd
Pe,_ . E,_p & Re,, ] Tp

in which L now designates the total bed depth, dp i1s the particle
diameter, and v is the kinematic viscosity. (Note that the
author of Fig. 6-2 uses the approach velocity v rather than ve
for Rew).

Solving the'N” and Pern equations for ZEr. and equating gives

, L
2N ( dp)Pe,_.

Also, Fig. 6-2 shows that the Per. for liquids increases from
about 0.5 at Reb < 20 to 2 at Reb > 1000 so that the foregoing

becomes :

1( L ' L
7- —f ] < - S
) @) s d,

The diameters of ion-exchange resin beads commonly are in the
order of 0.4 mm. This gives a I/ds ratio of about 318 for a bed
depth of only 5 inches, and’a N~ ranging from about’' B0 to 318
transfer' unite in accord with Egn. 7-3. We know from the work '
done in Chapter 6 on flows’in tubes that such large values of N~
will yield very little dispersion (e.g., Fig. 6-1 etc.); conse-
quently, the dispersion term of ‘Eqn. 7-2 is usually ignored when
dealing with fine-particle fixed-bed reactors. °

One must now balance the transfer of mass occurring between
the fluid and so0lid phases, or ! :

aq

(A, bx)er, - -(A,bx)p, dt

so that

. da
dt

-

ry = =

m |
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in which p, is the bulk density of the bed so6lids (mases of -solids
per unit ‘of overall columh volume), g ie the moles of ¢ that have
reacted’ with the" bed golids per unit mass of the solids, and r»
is the reaction rate relative to the’ fluid phase (moles of ¢ per
unit of fluid volume per unit time). Using the foregoing to
augment Eqn 7-2 while ellminating the disperelon term gives

i eéE - ér, - &v 40 5 o, u2£
cat o FTe T FUGy “Peyy o'
The foreg01ng can now be simpllfied by redefining the inde—‘
pendent Varlable t as»

':‘v' H vy Rl ,'A. x d B
(7-4) S - =t = { - ;: - a4 ,.I

in which ¢t~ is the: time elapsed since a plug flow step input has
passed through the bed depth at x. This gives the following
31mple expression commonly used to evaluate processes carried out
in. fixed bed reactors (Sherwood et al., 1975):

aq oc
Po3t- * Vox

(7-5)

. b

] S
7-2. ITON-EXCHANGE KINETICS

The only analytical solution of the ion-exchange process
known to this writer is the one published by H. Thomas in 1944
relevant to monovalent ions only (Sherwood, et al., 1975; Perry &
Chilton, 1973).

Assume we are interested 'in'exchanging Na+ and H+ in water.
Expressing the reaction in the form of an homogeneous reversible
chemical reaction gives

Na® + RH T—== H' + RNa
c . qm—q Co,—=C q
4 At :[f..‘l I : R i i3 .
in which & represents the ion exchange re81n, s is the concen-—
tration of Na+* in the feed water stream, and gm is the maximum
monovalent ion capacity of the resin. It then can be ghown from
the laws of mass action that: CEETRE

2q 2 ( q) ]
— - — - 1 b etee— — — — ——
(7-6) Pbat pbat: Ka[c am (C c) an

s
)

in which X = kf/kb and Af & kb are the forward ang ‘reverse reac-

tion ratese, respectively, *with both posgessing dimensions of per

unit of concentration per unit time. It should be noted. that in

accord with the derivation of Thomas that the product Qqpk;p, was

replaced in Egqn. 7-6 by a kinetic coefficient xa of unknown mag-

nitude to compensate for the resistances to transport of the ions
from one phase to the other.
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The time required for the mass transport process consists of.
that needed for a constituent to diffuse from one-phase to the
other, to diffuse through the pores of a porous solid, and possi-
bly even to diffuse through the solid itself.. .It may also con-
sist of the. time regquired to ovexcome any .resistance to
adsorption at the fluid-solid interface. . Resistances of this,
type are almost always rate controlling in two-phase operations
and processes (Sherwood;, et al., 1975) The term’xa used by
Thomas consists of the product of & rate constant x (length per
unit time) and the surface area of the solid a (surface area per
unit of bed volume). The utilization of a single constant x to
represent all of these resistances to mass transfer is, of
course, a rather gross approximation but subsequent digital anal-
vsis showed that while the Thomas solution does yield break- "
through curves which differ somewhat from those obtained
employing exact correct mass transfer formulations, the errors
are not serious for design purposes (Sherwood, et :.-al., 1975).

The reaction deplcteq by Eqn 7T-6 will eventually cease upon
reaching equilibrium. The ion concentrations at equilibrium are
given by I i

P
Qm 1+ (K-1)(c/¢q)

(=)

in which g* de51gnates the g .at equllibrlum w1th C.

?EQns. 7-5:& 7-6-can be simplified considerably upon repla01ng
x and t° with the following dimensionless:variables:

i

Ka
n. = g—;—zx (no. of. transfer units)
Cr 1248 . | I
T - U(p q ); '
Lk e . : i T - W . VA
nT = (m)( )t’ (dimensionless time).
8dm ; 4 F 1y 3

o bl

This glves o ' ' ': ' y
0(@/qm) _ _9(c/c,)

(7-8) , |
) 5mT) 1 em . _
ifid Sk ‘ [ rl st o "
0(q/qn) c (I )c q 1 g
- AL LT TR [ ) P PR P . (B
7=9) ) e TR YR e T K ae

It is now readily evident that Ean. 7 9 1B non—linear except for
the very special case of K'= 1
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7-3. THOMAS® SOLUTION:. .| | I
Thomas devised a new dependent varlable J deflned by ,

_ SNREN i1 € ) N N
(7-10A) (K l)q... Ton. - j on’

i ,_ e _c_ _oln(j) 1 1o 9y
(7-10B) (K =17 A(nT) j a(nT)

4

which is a funotlon of both ¢ and 4q. "Eqn 7-8 was then equated
to Egqn. 7-9 and the foreg01ng expressions substituted into the
result as directed. Two terms containing cross-products of n and
nT were obtained which cancelled each other out leaving the fol—
lowing single, llnear partial differential equation in Jj. e

9% . " o 5 AL fl
a(nT)on o(nT) K on

(7-11) F

Boundary Cbnditions (BCs): Assume that the purpose of the treat-
ment is to replace Na+ with H* in water, and that the bed resin
is fully charged with H+ at time zero so that g(x, t=0) = O. Also
agsume that ' the interstitial water in the bed is free of .Na+ at
time zero, and that the feedisolution contains a concentration co
of Na+ which is introduced into the ion-exchange column as a step
input at time zero. The concentration of Na* within the inter-
stitial water at x = 0 w1ll thus always be co so that o(x=0,%t) =

Co. TR T T U R . [ A A R Ehig o 1T

Changing t to 't~ does not alter the foregoing BCs. Eagn. 7-4
shows that x = vut at £~ = 0, which demonstrates that the coordi-
nate system: stays attached to the plug flow wave front as it -
moves through the resin bed.' This front always encounters fully
charged resin so that g(x,t =0) 0. Also, Ean. 7-4 shows that 't
= t~ at x.=.0 80 that e(xF0,t7) = Co. ;

Eqns. 7= lOA’& 7-10B must now be used to,adqust the foreg01ng
BCs to the new varlable J as follows.

i. a&/dm = 0 at nT'= 0 86 that from Ean. 7710A'

LI

.adj
dnl"r' = G
The L.T. of the foreg01ng with respect to n is
0,0
ey - 100

in which u is used henceforth . to deeignate the L.T. of n.
‘The inverse 1is ,

P .. Jenr.,0). = -j(0,0)

in which J(0,0) is the value of J at n and nT = 0.
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1i. ¢o/co = 1 at n = 0 so that from Eqn. 7-10B

dj = l— )' 0]
G (K 1)icoinry. -
The L.T. of the foregoing with respect to nT is '
=, 4 7€0,0) 3 :
J(Q'S) s+ -1 ;’)( !
in which s is used henceforth to: deeignate the L. T of nT.
The inverse is . 2 3 { "t =

J'(O.nT)-- - J'(O-.O)'exp[ (%—l)nr] | ,

Integration» The integration of ‘Egn. 7-11 can be initiated by
taking the L.T. with respect to either one of the two independent
variables while holding the other constant. . For example, com-—
mencing with n, one obtailns (5l ©T

]

-5 (R Sl jco,O)exﬁt(l—K"MT]

d(rT) '
after uti11z1ng two of the BC relationehips listed under BC ii of

the previous section. Taking the L.T. again with réspect to nT
one gets- L& : :

Gy

}’,(u,l.s),,f‘___’-_ u+l - ! . 18 37 - 1 ) . o
j(0.0) u[s(u+1)+u/K] (s+K'-1)[s(u+1)+u/K)

dfter utilizing & BC relationehip listed under '‘BC 1.

Transform Pairs 4 & 8 of Table .II, Chapter 2 may an be used
to obtain the inverse to the foregoing equation with reepect to
the transformed variable s, or. . 1

jCu.nT) - (l-k" [ ue (nT)] . 'exp[(l-K")nT]

j(0,0) uur1-k0 CPT@A DK Y T uermk
Subtracting unity from each Yy in, acoord with Operation 6 of Table
I, Chapter 2 then gives B

].(n.nT) _ CI—K_II)Q_(:'HRT/K)“ L_ll: u QNT/Ku]
7(0,0) (u-1D)(u-K") u

s expl(1-K" Y(rT -n)]

in which the bracketed terins remain to be inverted. Unfortu-
nately, the function giving this L.T. is unrecognized in theq
field of mathematics and is not listed in any tables of transform
pairs. The only recourse left is convolution as described in

Operation 14 of Table I. : 4 R

One term of the convolution integral is (Roberts & Kaufman,
19686)

I T/K
Fin) = L [a“"‘"(nu )] . fo(z %n)
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in which Io(=) represents the ;zero order of one of the modified
Bessel functions.in F; The second térm 1s )

fz<n_) - L“[ . = ] - —i——ce"—K"-e""‘).'
(u=1)(u=-K"") (1-K™H
The Solutfipn‘ to Ean. j—,ll?f:ﬁeynfﬁe\gqmas' S
Jj(n,nT) -1 -nT/K] - ( nT )
7-12) ——= = ex 1-K nT-n + e e 1yl 24—t |d
G128y So s PLCL=K7')(nT =) ) a2 e e

i n/’K

exp[(1<K ) (rT-n)] e~ f o1 (2T T)dE.
) 3 0" ! i k

The Thomas J'Funetlon ++ Thomas, found that the substitution of the
function. : e % - ' '
(7-13) J(a,B) = 1 - f"l (2/BE)dt

s o

into Eqn. 7- 12 gives the follow1ng much simpler appearing expres-
sion

P !

(7—14)
M = -— E—. -+ E . — -1 -
7(0,0) ‘_.1 y J(n___',l{ ) J_.(K.rﬂ ) 9).@,[,(1 K )(?T_ n)j.

TS, b Wy Sk s :
Thomas also proved that the J function possesses the following
useful properties and identity: :

oJ(a.B) _ R AT oy X

Jal

oJ(a,B) - g (P
— \/71c2J—)

J(aB) + JR.a) = 1 o+ By c2J_>

in which Ii1(=) designates the first order of a modified Bessel
function in =.

Eqn. 7-10B was then employed to convert the variable 'J back
to the original ¢. This necessitates taking the partial deriv-

ative of Egn. 7-14 with respect to (nT), which gives a result in
which two terms containing first order Bessel functions. cancel

each other out to yield
1 aj(n nT)
1(0 0) a(nT)

Substituting the foregoing plus Egn. 7 14 into Eqn 7-10B then
gives the following solution for ¢ (Sherwood, et al., 1975)

(I—K') exp[ (l-K )(nT n)]- J(K.nT)
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(7-15) lﬁ. _ ’ ' J(n/K.nT)

o J(r/K,nT) + [1-J(n,nT/K)] exp[(1=-K"(n-nT)]
Utilizing an approach 51milar to the one above for Egqn. 7-10A,
one obtailns , e : ".T. - '

1

-6y L = 1 - J(nT.n/K)
Tm J(n/K.nTY + [1+J(n,nT/K)]-exp[(1-K ") (n-nT)]

Evaluation of the Thomas J Function: The modified zero order
Beseel function appearing in Egn. 7-13 can be expanded into an
infinite series and then: 1ntegrated term by term. Unfortunately,
nearly every term of the ekxpansion also has to be expanded into
an additional infinite series in order to be integrated. The
result is the following remarkably complicated expression

. ; { = - m+2 = L
(7-18) J(a,B) = 1 - "’Z Q—WNZ(;B+)2)!'Z(i+2ﬁ+m)9

=0 L' m=-2 =0

in which 7 = 0,1,2,3;... and,m =-2,-1,0,1,2,3,... . The rate of
convergence is acceptable only when the product aff < 36.

Thomas developéd'the'following'approximation to Eqn. 7-13
which is sald to be in error by less than 1% when af > 36 (Sher-

wood, et al., 1975).
_exp-(Ja-{B)*
24m-[(ap)’*+R]

If ap > 3600 then the foregoing degenerates to

\

7-19)  s@B) w sli-ercfa-yEy -

(7-20) J(a.B) & s(l-erf(fa{@)).

Note that the term (J_ J—) appearing with the error function can
be either positive or negative. One thue must at times utilize
the identity g o : = TR | .

erf(-z) = —erf( Z) y,

i.e., first set a negative = positive to procure the erf(7) and
then multlply the answer by -1.

Egns. 7-15 & 7-16 are shown plotted agalnst Z’ln Fig. 7-3 for
K=2/3, 1 & 2; and:-for n.= 20 transfer units. The value of =n
selected for this figure was large enough to permit the use of -
Eqn. 7-19 throughout.

The reeults illustrate clearly the sensitivity.of the ion-
exchange process 'to the ratio ke/kvn. If K = 2/3 then,the kinet-
ice of the exchange is unfavorable from a process viewp01nt and
¢/co is considerably greater than g/am throughout 7I. If K = 2
then both breakthrough curves sharpen considerably, and become
virtually identical.

r
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It should also be noted that if X = 1 then the breakthrough
curves pass close to T'= 1 at ¢/ce = 1/2. Tables of the Thomas J
function published by Sherwood et al. (1975) demonstrate clearly

that as n2, T21 at ¢/co = 1/2 when K = 1.

Regeneration of Spent Resin: Referring again to the example of
the exchange of Na+ and AH* ions, it will be assumed that the
resin has become fully saturated with Na*, and that the residing
interstitial fluid possesses no H+ at time zero so that g(z, t =0)
= gm. A step input of an aqueous regeneration solution of HCI at

a concentration co is commenced at tlime zero so that e(z=0,t") =
0 for the Nat.

Following the analytical steps already outlined for the
treatment mode, one can show that

c 1 - J(n/K.,nT)
(7-21) — = =
Co 1 = Jn/K,nT) + J(n,nT/K) exp[(l1-K"")(n-nT)]
and
(7-22)
q _ 1-J(n/K,nT) + [J(n,nT/K)+J(nT/K,n)-1] exp[(1-K')(n-nT)]
G 1 - J@/K.nT) + J(n.nT/K)-exp[(1-K ") (n-nT)] '

Plots of Eans. 7-21 & 7-22 are presented in Fig. 7-4 for K =
2/3, 1 & 2; and for n = 20 transfer unite. It must be recog-
nized, however, that the K for treatment may differ greatly from
that for regeneration in the ion-exchange process because the
elution solutions commonly are made very strong to hasten regen-
eration. This increases the lonic strength of the elution solu-
tion which in turn affects the rate constants kr and k»
appreciably (Sherwood et al., 1875H).

7-4. COMMENTARY

Unfortunately, the Thomas solution applies strictly to mono-
valent ions and the water quality engineer must deal primarily
with divalent ions. The solution does have further applications,
however, as illustrated in the following chapter.
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Fig. 7-4. Plots of Thomas” Analytical Solution for the Regenera-
tion of Spent Ion-Exchange Media in Packed Bedsa.
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; . ,» CHAPTER 8
LANGMUIR ADSORPTION IN FIXED-BED REACTORS

In 1916 Langmuir derived the following isotherm applicable to
the adsorption of gas molecules onto completely homogeneous sur-
faces with negligible interaction between the adsorbed molecules
(Eerry & Chilton, 1973:; Sherwood, et al., 1975);

¢ . __Kap

8-1 _
¢ ) Qm I + Kup

in which p 1s the partial pressure of the adsorbate in the gas
phase, Ka the Langmuir equilibrium coefficient of the adsorbate
on the solid phase (dimensions of per unit pressure) and the
remaining terms are aB deflned previously

Now let po egual some reference partial pressure such as that
of the adsorbate in the gas feed stream, and let g*s represent g
at equilibrium with po. One then obtains from the above'

(1 + K, D4)q,
Do

KiQmn =

whicn upon substitution back ;nto'Eqn. 8~1 gives

g _ (1 + K,p.)P/P,

SRS o 1 + Kup
Finally, the substitution of & -

(8-3) ro= 1%K,p,

into Egqn. 8-2 yields

8-4) ';L;.- s r((f_/f)“gp/pﬂ,)

which is identical in form to Ean. 7-7 of Chapter 7 with p, r, .
and go* replacing ¢, K, and gm, respectively. In other words,
the Thomas solution for ion-exchange also applies to Langmuir
adsorption upon making the foregoing specified, substitutions.
There also exist some limitations which follow

The Langmuir equilibrium coefficient Ka must always be finite
and positive; thus, r (or K) as defined by Ean. 8-3 is always >
1. The partial pressure po of the adsorbate must be modest rela-
tive to the total to prevent a substantial change in v» which was
held constant by .Thomas. - Finally, the Langmuir adsorption
isotherm has also been used to describe adsorption from liguids,
but adsorption from liquids usually proves to be much less ideal
than from gases (Sherwood, et al., 1975). N
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EXERCISE 8-1: 1In 1839 E. Wicke 'investigated the desorption of
COz gas from a fixed-bed column containing porous carbon par-—
ticles (Sherwood, et al., 1975). Use the Thobmas solution
.combined with the Langmuir adsorption. isotherm to analyze the
study results. 5

Description: Wicke employed a column having a cross-sectional.
area Ax of 0.405 cm2 with a total bed depth of 72 cm. The carbon
bed had a bulk density p, of 0.36 g/cm® and a void ratio e (a1
0.345. The total pressure and temperature of the gas phase were
maintained at about 1 atm and 0eoC, respectively.

The bed carbon was first brought to equilibrium with COz at a
prartial pressure (ps) of 100 mm of Hg. A carrier gas free of CO=z
was then introduced as a step input into the column at a flow
rate @ of 1.85 cm3/s, and the column effluent was monitored for
COz. The study results are shown graphically in Fig. B8-1.

Procedure: Note first that v = Qg/dx = 4.57 cm/8; Ve = v/e =
13.24d em/s8 and t" = t - x/vi = t - 5.44 s. Also, Fig. 8-1 shows
that it took about 850 s for the ratio ¢/co to decrease by one-—
half, or ti,z = 650 s. W ;

Ean. 7-21 was used to compute the ratio ¢/co after picking
the parameters n and K by trial and error. The value of Th,=2 was
also carefully ascertained. The definition of T given in Chapter
7 was then used to relate Ti,.2 to ti1,=z, or

Co 4.57
8-5 T - 7 | X———X(t,,,-5. ‘
( ) 172 (pbqa) 72 ( 172 5 44)

Now if n = 25 and K = 1.6 as stated in Fig. 8-1 then Ti,= = 0.894
and the foregoing gives Vi S

C, x ) Co
0.894 = (—.)XEX(65‘0—5.44) & —— = 0.0219.
Podo 72 " ' Po,

This shows that the value of g at equilibrium with 100 mm Hg of
CO=z is : A !

¥ (co) o et il MO 7.45x 10 *moles/
9 0.0219p, 62.36x10°x273/70.0219" 0.36 ) S

Egn. 8-3 shows that K= 1.6 = r = 1 + Kapeo; consequently, Ka
= 0.6x1072 per mm Hg, and the maximum adsorptive capacity gm of
the carbon for COz is found to be

. Kao | L.
I = E=1 0.67

Finally, the Langmuir adsorption isotherm producing the response
depicted in Fig. 8-1 is

2x10°moles/q.



69

_0.6%x107%p
1+0.6x107%p

g" = 2x107°

at 0eC.

Commentary: No doubt the correspondence between the observed
data and the computed curve shown in Fig. 8-1 could be improved
with a fine tuning of the parameters n and X. Still the results
suffice to show that the desorption of carbon dioxide from porous
carbon is near ideal except at the very beginning and end of the
process. This was noted by Sherwood et al., (1975) employving an
entirely different method of analysis, and it was suggested that
the discrepancy at long times probably is due to the deficiency
of the Langmuir formulation at small values of c.

EXFERCISE 8-2: 0il shale contains appreciable amounts of high
molecular weight kerogen which is recovered by first breaking up
the raw shale and then retorting it in situ or above ground at
950°F or higher. Various hydrocarbon vaporsg and liquids are pro-
duced which are tlien captured and processed further for the mar-
ket. The spent shale fragments are extremely heterogeneous in
both size and shape as well as the degree of water soluble total
organic carbon (TOC) content (Hall,’ 1982) '

Hall investigated the leaching of the TOC into water emplcy—
ing column studiee, with the results of one such study shown in
Fig. B8-2. Ascertain the ability of the Thomas sclution combined
with the Langmulr adsbrption isotherm to depict the data pres-—
ented thereon.

Description:; The epent shale fragments used in the column study
depicted in Fig. 8-2 were those which passed through a 1/2 inch
gieve but not a 1/8 inch sieve. Because the raw shale tended to
fracture along planes of stratification, they were roughly cylin-
drical in shapre with an average diameter and thickness of about

0.7 cm and 0.2 cm, respectively

The column used had a diameter of 11 4 cm and a total bed
depth of one meter. The dry bulk densitydp,_of the bed was 0.88
g/cm3 with a total void ratio including the pores within the -
solids of about 0.59. The external vold ratio € exclusive of the
pore volume was 0.44. V¥ ' pag *

Distilled water was first allowed to stand within the bed for
an hour or so at ambient temperature with the concentration co of
TOC in the water increasing to an average of 34.7 mg/L. A step
input of distilled water was then commenced at a flow rate @r of
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556 ml/min and water samples were collected periodically for anal-
ysis at bed depths of 25, 55 and 85 cm. Note that the foregoing
data give an approach velocity v of 32.3 cm/h and a bed velocity

vis = v/e of 73.5 cm/h.

Procedure: Particular attention was pald to the data collected at
the 85, cm depth because they gave the most complete pattern. A
trial and. error apprrcocach indicated that 1 and K should be around
14 and 2.5, respectively. Also, the value of the .group of con-

stants c,/(p,g.) contained in the definition of T used to relate T
to real time ¢t was about 2.5. '

- These values were held constant for the remaining two depths
sampled except nn was set proportional to the sampling depth x in
accord with the definition of n given in Chapter 7. This gave 2
transfer units of 9 and 4 for the 55 and 25 cm depths, respec-—
tively. Additionally, the time ¢t~ had to be varied with sampling
depth in accord with ¢= ¢ - x/v». The results obtained at the
three depths sampled are shown in Fig. 8-2.

Commentary: Additional studies performed by Hall showed that the
TOC in the water had in no way attained full eguilibrium with. the
shale fragments within an hour’s time frame. This commonly is
the case for studies made on liguid-solid equilibria, with exper-
imental measurements of g pertaining primarily to the mass of
solute contained w1th1n the exterior outlines of the solid phase
only (Sherwood et al., 1975). .

Addltionally there probably existed some longitudinal disper-
sion in the column combined with. wall effects. It also would be
nalve to expect that the heterogeneity of the shale fragments
would be exactly the same at all bed depths. Even so, the Thomas
solution combined with the Larngmiir adsorption isotherm worked
remarkably well 1n e?plalning the obseerved ‘data patterns

Dlscrepancles appear at relatlvely long operatlon times, how-
ever, with the TOC concentratlona tailing off at a much slower
pace than predicted This likely results from the extensive time
requlred for the TOC to diffuse out from the centers of the rela-
tively large shale fragments. Thomas®~ assumption of a constant
resistance to mass transfer makes it impossible to account for
such ani effect, and a second stage of diffusion from the solid
prhase particles has to be added to account for the entire length
of observation as was done by Hall (1982).
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Fig. 8-1. Desorption of Carbon Dioxide Gas from Porous Carbon.
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Fig. 8-2. Contamination of Water with Total Organic Carbon
Derived from Spent 0Oil Shale; Data of Hall (18982).
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APPENDIX A.

A STANDARD METHOD OF OBTAINING THE INVERSE TO RATIONAL s-DOMAIN
FUNCTIONS

The method of residues is used to invert s-domain functions
of the type

z - FP(s)
(A-1) g(s) O

in which P(s) and @(s) are rational polynomials possessing no
common factore, and P(s) is at least one order less than @(s)
(otherwise the problem cannot be real). This method is limited
only by the ability to determine the zeros to @(s).

The general approach is to ascertain first the values of 5 in
the denominator @(s) which cause g(s) to go to infinity. 5Such
values are called the poles of the function, and each pole yields
a regidue. The sum of all such residues then gives the completed

solution.
To illustrate, let @(s) = (s+a)2(s+B) where a%f. This poly-

nomial equals zero at s = -a and s = -3. These zeros of @&(s)
equal the poles of g(s5) but we must distinguish between the pole
at 8 = —a which occurs twice in &(s), and & = -B which occurs

just once. The former is called a multiple pole and the later a
simple pole.

The residue for a multiple pole at s = s1 appearing m times
is (Reed & Reed, 1968) ,

1 d™ '[(s-5,)"g(s)e™]

A_2 - e —
( ) res g(sl) (m_ 1)! lsi_’rsl:ll dsm-l
This type of residue may equal zero, but it must always be
finite.

If m = 1 for a simple pole then Ean. A-2 reduces to
(A-3) res g(s,) = lm (s-s,)g(s)e™

S—’Sl

This kind of residue must be finite and other than zero.

Another very convenient method of procuring the residue of a
simple pole is
P(8) a
(A-4) res g(s,) = == |
! Q'(s) g

provided that P(s) is finite.

EXERCISE A-1: Use the method of residues to determine the
inverse to Egqn. 2-24 of Chapter 2; i.e.,
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a?/(1+p) _ a?/(1+B)
s?+2as+a?/(1+B) (s=ri)(s-rz)

(2-24) r(s) =

where a = 2(1+B)/T, the roots ri and rz are -a(l+g) and -a(l-q),

respectively. and g=B/(1+pR).

Clearly, this s-domain function possesses two simple poles at
s = r1 and & = rz, and the two residues may be computed with
either Eqn. A-3 or A-4. For Egn. A-4:

Q(s) = s®-(r,+r,)s+r,r, so that Q’(s) = cigis) = 2s-r,-r,
Consequently,
2 2
o ]. +§ a 1 ryt
= - 1 — " = . e !
res r(r.) 1+B3 sgﬂ 28-r,-rp ¢ 1+8 ry-r, ¢

Likewise, for root r=

res r(r,) =
The complete solution is
t - .

4 1+ ry—rsa

which yields Egn. 2-25 of Chapter 2 upon the substitution of the
formulations for a, ri, and rz into the above.

EXERCISE A-2: Use the method of residues to prove that the
inverse of the g(s) function (s+a) -2 is as given by Transform
Pair 6 of Table II.

One has to use Egqn. A-2 to obtain the inverse to this g(s)
function because it possesses just one pole at s = - a repeated n
times. Egn. A-2 shows that

- I : n-1 (S+a)ne+ts n-1
res g(-a) =) lg&{d [ et a) /ds

u—1g+ts n—-1 i tﬂ-l o
- - lim - - lim e ————p~
(R=1) o ds™! (n=1) soa ° (n-1)!

which matches Transform Pair 8.

EXERCISE A-3: Use the method of residues to determine the peri-
odic output from a single CSTR subjected to a sinusoidal input of
tracer defined by the function 4 sin wt in which 4 is the

amplitude and w the angular velocity.
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The L.T. of the output g(s) from the CSTR consists of the

product of r(s) for a CSTR and g,(s) for the input function.
Transform Pair 7 of Table II shows that
Aw

g.(s) o

and so.,
aAw aAw

9(s) = CTstrad) | (sra)(s+iw)(s-iw)
in which a = 1/T for the CSTR. This shows that the s-domain
function has three simple poles at 58 = -4, 8 = -iw, and & =

+7w . Employving Ean. A-4, one obtains the following three resi-
dues:

) T (-a) Aw - 1 e (Aauo )ex L
. s -a = - lim - —_— -=
’ Al N s+-a  §2+w?+2g(s+a) az+wz )P T
This residue disappears exponentially with time because it repre-
sents a perturbation resulting from tracer start-up at time zero.
It is of no interest here and is ignored henceforth.

o , Y e aAd -lwt
ii. res g(-iw) = aAw~sl_}H1w PPy — = -m.
Also, in a like manner.
L. res g(+iw) EF_(ii—iw)' e
The completed solution is thus
gt - aA
f@)y = aAi[Z(a—iw)-2(a+iuo)] = a2+wz(a-sinwt—wacoswt)

Now letting cos B = a/Ja2+w?, sin B = w/Ja?+w?, and tan B =
w/a, one can show that the foregoing reduces to

Fiy = =24 _(sinwt-cosp
[02 + ok
aA . o A
= ———sin(wt-tan w/a) = ——
ya?+w? V1+(wT)?

This shows that the input sinusoidal function 1s attenuated by

1/41 +(wt)? and ite phase delayed by the angle whose tangent is
wT as it passes through a CSTR.

- coswt-sinfB)

sin(wt-tan ' wT)

To make this solution appropriate for a tracer study, one
must add on an average concentration where <c> 2 A4, or

(A-5) c(t) = <c> + -—--éfsin(wt—tan"luo?)
J1+(wT)?
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If a periodic input of this tvpe is used to evaluate the
internal mixing of a real system, then it is customary to vary
the frequency w and then plot the resulting amplitude change and
phase shift against frequency. A plot of this type is called a
Bode plot (Seinfeld & Lapidus, 1974).
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APPENDIX B
PERMEATION OF SOLIDS

B-1. A SLENDER ROD

f—"/H — Vapor, y

---AXis

Fig. B-1
Referring to Fig. B-1, the mass flux of a VOC into a slender
plastic rod is

dm de
ot - et HDuz ",

in which re is the radius and H the length of the rod. Now
m. = ¢V = c.nriHy
s0 that
daim/m.) df. 2D, dc
@ " @t T o, arit
in which fe is the fraction of rod saturation, or in dimension-
less coordinates

(o § &8 2 dc , . Dyt r
E o C—..C—lxh.l in which 6= raz & }\.'F—a.

The boundary conditiones match those listed in Chapter 5 for
the derivation of Barrer s equation. Taking the L.T. of the
above function with respect to time and setting ¢ = 0 at £ = 0

gives
- - 2.1 dC(s)
(B-1) Fs) = = ool

The Fickian diffusion equation written in cylindrical coordi-
nates is

ac 1 ac d%¢
() % - NN T e
which has a L.T. with respect to time of
d3C(s) 1dc(s)
INE + T sC(s) 0

or
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2
2260 | LdC(8) | ey = 0

(B-3) P e

upon standardization by setting z = p A in which p2 = -s.

Egn. B-3 is Bessel s differential equation of zero order
which is not amenable to integration by the L.T. technique due to
its variable coefficients (Reed & Reed, 1968). The general solu-
tion is (Sokolnikoff & Sokolnikoff, 1941)

(B-4) C(s) = A-Jo(2) + B-Y,(2)

in which Jo(z) and Yo(z) are zero order Bessel functions of the
first and second kind, respectively; and A & B are arbitrary
constants.

Taking the derivative of Ean. B-4 with respect to =z gives
dcC(s
LG - asm - BY@
which must equal zero at =z = 0O thanks to the symmetry in concen-
tration about the axis of the rod. Thus,
A-J,(0) + B-Y,(0) = O
Now Jz2(0) = O and Y2(0) = - so that the constant B must always
equal zero; hence,

c(l. c.
A €@y - &= 1

Jo(P) s Jo(p)

in accord with an ideal step input of VOC vapor pressure at time
zero, and Egn. B-4 becomes

C(s) _ 1 JoloM)
= s Jo(p)

where c¢c. =Ky

(B-5)

Taking the derivative of the foregoing with respect to A
gives
dc(s) e Jap)
an ! p Jo(P)
at A = 1, which in turn yields the following s-domain solution
for fs upon substitution back into Ean. B-1:
2 Jy(p)
sp Jo(p)

(B-6) Fq(s)

An Inverse: The periodic Bessel functions appearing in Egn. B-6
can be expanded into infinite products (Abramowitz & Stegun,

1966) to obtain
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[Tc1+s/at)

n=1
s 1—[ (l+s/a2,)
A=l
A simple pole exists at s = O, and an infinite number of simple
poles sn at -a2, in which a,,, represents the n"th zero of Jo(p).
Utilization of Egn. A-3 of Appendix A shows that the residue at s
= 0 is plus unity. o
Employing Egqn. A-4, the n"th residue of Egn. B-6 is

4J . _at
l(p) ess' — 4 P 0.n®

res 0(s) " FpTaE) + sie” e T Ta,

Fy(s) =

because Jo(p) always equals zero at the poles. The sum of all
residues then gives the inverse

' | SR S Dyt
(B-7) fo = 1 - 4) l exp-a2,® in which e-—r‘;—.

R=1 ao..,

Unlike the trigonometric functions, the zeros of the Bessel
function are not evenly spaced as shown in Table III for the

first ten zeros of Jo(p).

2.
A plot of Egn. B-7 is shown in Fig.-B—*. The first term of
Ean. B-7 suffices when fe > 0.75, or

(B-8) fe = 1 - 0.6917 exp-5.7836 when fe> 0.75.

Otherwise, convergence becomes SIOW if one ventures too close to
8 = 0.

TABLE III. FIRST TEN ZEROS TO BESSEL'S FUNCTION Jo(x)*

- . Uyn n a,n

1 2.40482556 6 18.07106387
2 5.52007811 7 21.21163663
3 8.65372781 - 8 24.3524'7153
4 11.79153444 9 27.49347813
5 14.83091771 10 30.63460647

¥ From Abramowitz & Stegun (1966).
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B-2. A SPHERE

The developments for a éﬁhere parallel those discussed pre-
viously herein for slabs and éylinders, and utilize equivalent
boundary conditions.

The mass flux of a VOC into a sphere is

am de
— = 4nri:p,.— ;
| dt FaDugrlrer,
Now
4 o
m. = Enr‘,c-
so that
a(m/m,) af, 3Dy ggl
dt dt FeCu dr e
or in dimensionless coordinates
dfe 3 dc . Dyt r
40 - E:'ah_l in which __?-F & 7\.-’_—0.

Taking the L.T. of the foregoing with respect to time and setting
c=0a8at t =0 gives .
3 1 dC(s)

(B-9) ' F.(s) = E:';";ﬁt-lkqo

The Fickian diffusion equation written in spherical coordi-
nates is

6 o2, o
P-1:] A oA N2

which has a L.T. with respect to time of
d2C(s) dC(s)
2 2
z e 2z T + 2°C(s) 0
upon standardization by setting z = p A in which s = -pZ.

The general solution to Ean. B-10 is (Abramowitz & Stegun,
1966) ' o

PR sin 2} cosz
(B-11) - C(s) = A( 5 )g - B( = )

in which 4 & B are arbitrary constants. . The derivative of the
foregoing with respect to z is
dC(s) A( 1, ) 3(1 )
—f = <|~—sginz + cosz| + —=|-cosz + sinz
dz zZ\ z zZ\z

which must equal zero at z = O thanks to the symmetry in concen-
tration about the center of the sphere. This can only occur if B
= 0. Additionally,

C(p,s)'p _ C- P
sin p s sinp
and Ean. B-11 becomes

(B-12)

(B-10)

A where c. =Ky

C(s) 1 sin pA
Ce sk sinp ’
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Taking the derivative of Egqn. B-12 with respect to A gives
dC(s)| o E:(p'cosp_l)
dA ! s\ sinp
at A = 1, which upon substituting back into Egn. B-9 yields' the
following solution for fs in the s-domain:

(B-13) . F.(s) = —S-(M—l) in which pZ=-s.

s2\ sinp

Inverses: Eagn. B-13 may be written in the following forms to
expedite the process of obtaining its inverse;

3 JEcashJE ) 3
B-14 F(s) = —|——Fm-1 = —(ysctnhys-1
( ) (s sz( sinhys sz(J— Is )
3 (1+e72* 3
§%72\ ] - g-21 - g7

The binomial series may now be used to expand the last of these
forme into the infinite series

3 3 N G

which has the inverse (refer to the development of Egn. 5-8 in
Chapter 5)

2] 0 — _,2 = n
B-15 s = 64/= - 30 + 12,/=-) ™ - 12) n-erfc—.
@15 £ - 6 o) et

6“3 n=1
Fig. -B=2 shows a plot of Egn. B-15. Just the first two terms
suffice when fa < 0.70, or

(B-16) Fo = 6\/3 - 36 when f,6<0.70.

Convergence is slow, however, for a fs much in excess of 0.70.

Expansion of the periodic functions appearing in the first of
the three forms of Egn. B-14 into infinite products yields

ﬁ(l +4s/(n-1)%n%) - ]:[ (1+s/n%n?)

3 R=1 n=}

52 -
[T¢t+s/n?a2)

n=1

F.(s) =

which shows that Eagqn. B-13 possesses a double pole at 5 = 0, and
an infinite number of simple poles s» at -a? = -nZn?. The resi-
due of the double pole can be ascertained by applying Egan. A-2 of

Appendix A to Egn. B-14 plus a liberal application of
L."Hospital s rule. After considerable work, however, one finds

that this residue is simply plus unity.
Egn. A-4 may now be used to derive the n"th residue by set-
ting @(s) = 82 sinhys as shown in Ean. B-14 so that
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_ P(S). e _ 6({scosh {s-sinh Js) rea __6 -am
res g(su) Ql(s)e |s-s. S(4Slﬂhﬁ+J§COShE)e Is'-h af‘e

because sinh JE;,: 048 Summing up all of the residues then gives
the solution

R Byt
(B-17) f, = 1 = 6;—15-e>cp—aﬁe fn- -which @= ‘; &. al=nin?

Just the first term of this function suffices when fe > 0.85;
i.e.,

(B-18) fe = 1 - %ekp-—nzﬂ when Ffo>0.85.
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Fig. B-2. Gain in Weight of a Slender Plastic Rod Exposed to the
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LIST OF SYMBOLS

A= Surface area (L=) - . .. | :

Ase Cross—sectional area (L2)

c Concentration (M L-3 or moles L—3)

od Concentration in reactor effluent stream

ci Concentration in reactor feed stream

cJ Concentration of reactant J

Co Concentration at time zero

C(s) Laplace transform of any of above

dp Particle diameter (L)

ds I.D. of a tubular reactor (L)

Drs Coefficient of molecular diffusion (L2 T-1)

Er, Coefficient of longitudinal dispersion (L2 T-1)

£ t) A function of a real variable 't

Fr Mass flux of a fluid (M T-1)

g(s) Laplace transform of 1£(¢)

J A function dependent on two variables =

k A reaction rate constant :

K Partition or equilibrium coefficient

Ka Langmuir equilibrium coefficient (per unit of pressure)

L A fixed distance (L) | |

m Mass (M) or a number in a series expansion

Mo Mass at time zero

my Total mass of tracer added to a reactor esystem

n Number of transfer units in a fixed-bed reactor

N Number of reactors in a CSTR cascade

N~ A dimensionless parameter of dispersion or
number of transfer units

p Partial pressure of a gas

o A reference partial pressure

P(t) Probability of a particle remaining in
a reactor during the time ¢

g Mass or moles of adsorbate adsorbed to solids
(M/M or moles/M)

dm Maximum adsorptive capacity of eolids

A Volumetric flow rate (L3 T-1)

r(t) The RTD-function (T-1)



Laplace transform of the RTD-function

Probability of a particle being removed
from a reactor during the time ¢

Laplace transform of the R(t) probability function

Complex wvariable
Forward time (T), or-any real variable

Complex variable
Velocity (L. T-1)
Velocity of a fluid through a fixed-bed reactor (L T-1)

Volume (L3) !
Coordinate in direction of flow or mass flux
Concentration in gas phase (M L—3)

Concentration in reactor gas feed stream

A coordinate direction or an unknown function
Fractional void space in a fixed-bed reactor
Relative degree of conversion

Dimensionless time

Thomas”™ kinetic coefficient (T-1)

Kinematic fluid viscosity (L2s—1)

Density (M L—23) | :
Bulk density of solids in a fixed-bed reactor (M L—3)
Variance of a distribution taken about the mean
Backwards in time (T)

Mean residence time (T)

Angular velocity or frequency (T-1)

Designates an average guantity
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