

Brillouin scattering distributed fiber optic sensor-From static to dynamic

Linging Luo ll432@Berkeley.edu // ll432@cam.ac.uk

OBJECTIVE

To develop a robust distributed fiber optic sensor

- Accurate distributed strain/temperature profile
- Dynamic sensing
- Low cost system
- Long lifetime
- Whole life cycle sensing and assessment

light is proportional to the strain.

BACKGROUND

Laser pulse is sent from the analyzer. When the pulse interacts with the acoustic wave on the fiber at different location, a small volume of light will be scatted back with shifted frequency depending on different frequency and energy of the acoustic wave. By examining the shifted frequency, the strain/temperature along the fiber can be monitored.

However, current system is both expensive and has low resolution, especially in the dynamic measurement. Therefore, we need to design a suitable analyzer for civil engineering application.

STATIC SENSING - PROTOTYPE A

Performance

- Length: 8 km
- Readout: every 20mm
- Data amount: up to 50,000 data pts/km
- Resolution: 20 με / 1 °C

Feature

- Digital based Low cost
- Advanced signal processing High performance
- Dynamic sensing Better engineering assessment

Prototype A

DYNAMIC SENSING - PROTOTYPE A

Experiment

- Shaker vibration at 60Hz with 2mm movement
- 6m fiber vibrated at the end of 1 km fiber
- 2.5kHz sampling rate

Result

- Different power gives different vibration profile
- In 3.12W, the resolution is about 80 με
- 60 Hz is clearly showed in the frequency domain.

PERFORMANCE IMPROVEMENT 1

Speed & Strain/temperature resolution

Using highly nonlinear fiber (HNLF)

Because the signal to noise ratio is improved, the measurement speed and be 5 times faster

Nonlinear fibre

SMF-28

• The uncertainty is half -> 8 $\mu\epsilon$ / 0.4 °C

PERFORMANCE IMPROVEMENT 2

✓ Spatial & Strain/temperature resolution

Signal processing - SPWV

- Spatial resolution improves with factor of 1.5 $x(u+\tau/2)x^*(u-\tau/2)e^{-j2\pi\tau f}d\tau du$
- Strain/temperature resolution improves with

factor of 2.1

PERFORMANCE IMPROVEMENT 3

Spatial/Strain/temperature resolution

Signal processing – Quadratic time-frequency analyzing

CONCLUSIONS

A small gain STFT-BOTDR has been developed.

Performance in prototype A:

Length 8 km, Readout 20mm, resolution 20 με / 1 °C, gauge length 1m, up to 1.5 kHz theoretically and 10-60 Hz has been proved.

Further developed versions:

- HNLF: Length 1km, readout 20mm, resolution 8 με / 0.4 °C
- SPWV: Length 8km, readout 20mm, resolution 10 με / 0.5 °C
- ZAM: Length 9km, readout 20mm, resolution 34 με / 1.72 °C, spatial resolution 0.03m

ACKNOWLEDGE

- University of Cambridge: Dr Xiaomin Xu, Dr Yifei Yu, Bo Li
- University of Southampton: Dr Jize Yan, Dr Francesca Parmigiani
- EPSRC (EP/K000314/1)