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Objective of study
We develop a Bayesian inverse modeling framework for estimating

hydrological and thermal parameters in the hyporheic zone. The end goal is to
obtain posterior probability density functions of these parameters.

In this framework, parameters are treated as random variables. Using
pressure measurements and heat as a tracer of the flow, we seek to
characterize their statistical probability distribution. One benefit is that this
framework handles non-sinusoidal timeseries. The posterior distributions can
then be used in a Monte-Carlo framework in order to simulate uncertainty-
quantified stream-aquifer exchanges timeseries.

Target parameters and forward model
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Testing the likelihood function on a synthetic case

Data reduction strategy for field temperature timeseries

Application: uncertainty-quantified 
stream-aquifer exchanges

The posterior distribution of physical parameters obtained from the inversion
can be used in a Monte-Carlo analysis to obtain uncertainty-quantified model
outputs. This analysis can be used to predict another variable of interest 𝑥 that
is an output from a physical model involving parameters 𝒚.

𝑥 𝑥

This strategy allows to fully take into account uncertainty in parameters 𝑦 in
the estimation of stream-aquifer exchanges.

Summary
• We present a data-driven framework for estimation of hyporheic

hydrothermal properties. We use a combination of pressure and
temperature measurements and use heat as a tracer of water exchanges.

• Thanks to the specification of a structural model, we don’t need to make
assumptions on the shape of the likelihood function.

• The synthetic study allows to test the algorithm for a low-dimensional
timeseries. However, on field data, effective data reduction strategies are
needed to keep the dimensionality of the likelihood function under 6.

• In the framework of a Monte-Carlo uncertainty analysis, physical
parameters can be directly from the posterior distributions to estimate
stream-aquifer exchanges and the associated uncertainty.

• One main challenge is that this algorithm is computationally expensive.
We used parallel-computing to increase the computation time of the
study.
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Available data
• 5 vertically-distributed temperature timeseries
• 1 hydraulic head differential timeseries
15-min sampling period
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We use a one-dimensional finite volume model 
(Ginette) to simulate water and heat exchanges.

Avenelles basin, France - Mouhri et al. (2013)

Boundary conditions
• Stream and deepest temperature timeseries
• Head differential timeseries
Data for inversion (model output)
• Other temperature timeseries (Type-B)

𝐲 : target parameter vector
𝐲 = (n, k, λs, c𝑠 , ρ𝑠)

Bayesian inversion algorithm

Structural model definition

We characterize the physical parameters 
y = (n, k, λs, cs) by a statistical 
distribution function,

ie. we know what family of distribution 
represent the distribution of 𝑦 in the field.

Osorio et al. (2015); Over et al. (2015); Rubin et al. (2010)
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We seek to characterize 𝜷 ,
parameters of the statistical
distribution, using information
from measurements 𝒛∗.

The analytical solution is the forward model.
𝐓 𝐳, 𝐭 = 𝐓𝐦 + 𝐀𝐞−𝐚𝐳 𝐜𝐨𝐬 𝛚𝐭 − 𝐛𝐳

a, b are functions of n, k, λs, c𝑠, ρ𝑠.

Parameters of synthetic truth

Idealized timeseries used for the synthetic
case study. 0 and 0.4m depths are used as
boundary conditions of the model, the other
timeseries are used in the inversion.

We use the nested simulation
procedure following the Method of
Anchored Distributions (MAD) and
implemented in MAD# (Osorio et al.,
2015).

We choose to work with flat non-
informative prior distributions.

Prior and posterior density functions for
varying 𝜇𝑚. The vertical line represents the
underlying true parameter. The posterior
peaks at the underlying true parameter.

Evaluation of likelihood function at 𝜷𝑖

• Data reduction using 6 Fourier coefficients (2 per timeseries)
• Nonparametric density estimation

Fourier coefficients of realizations ሚ𝑓𝑖,⋅ (grey) and synthetic observation 𝑓∗ (vertical line).

The likelihood value is the density of the realizations ሚ𝑓𝑖,⋅ at the synthetic observation 𝑓∗.
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Posterior 𝒇(𝜷|𝒛∗)
Depth 10cm Depth 20cm Depth 30cm𝑛 = 0.15

𝑘 = 10−11𝑚2

λs = 2.3 Wm−1K−1

cs = 103 J kg−1K−1

ρs = 2.9 ⋅ 103 kg m−3

Combining likelihoods for each Fourier
coefficient yields to a likelihood value for
𝛽𝑖 and to the posterior distribution.
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Sampling parameters from
the structural model. In
order to ensure that the
realizations are equally
plausible, we use latin
hypercube sampling.

posterior ∝ likelihood × prior

1. Sample
from prior

2. Sample from
structural model

3. Run forward
model

4. Evaluate
likelihood

5. Evaluate
posterior
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𝜷 – structural parameters
𝒚 – physical parameters
෤𝒛 – model outputs at measurement locations
𝒛∗ – measurements
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𝑖 – index of sample
𝑗 – index of realization
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Reconstruction of field temperature timeseries using the Fourier
transformation. nbFou corresponds to the number of Fourier
coefficients used in the decomposition. The shape of the timeseries is
challenging to characterize using a Fourier decomposition only.

When working with field data, measurements exhibit a high
dimensionality. For the purpose of nonparametric density estimation,
it is recommended to work with a low number of dimensions, ideally
less than 6 (Scott and Sain, 2004). While 2 Fourier coefficients per
timeseries allow to reconstruct perfectly the shape of the timeseries
for the analytical case, a different decomposition needs to be
developed for the case of field timeseries.

Depth 30cm Depth 45cm

4
We decompose each timeseries using 3 coefficients:
• 1 coefficient for the slope
• 2 Fourier coefficients of the residuals after

removing a moving average

Prior and posterior density functions for
varying 𝜇𝑘. This time, field measurements
were used to compute the likelihood, so
there is no underlying true parameter.

Example of likelihood 
estimation for 𝜇𝑘 = −10.4

Depth 30cm Depth 45cm

Reconstruction of the temperature timeseries using
a combination of linear trend and Fourier
coefficients.

𝑝(𝒚|𝒛∗)

𝒚 – physical parameters
𝒛∗ – measurements
𝑥 – other quantity that we want to predict
𝑀 – forward model
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of output 𝑥

𝑀

𝑀

𝑀


