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IMPLICATIONS FOR NUTRIENTS & METALS
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SIMULATING AN ECOLOGICAL BOUNDARY

CONCLUSIONS

Dissolved oxygen was
guantified from Primary
f.!?SS;’Ei;ZTZ“JfQ.l Prod uctivity (P), Respiration
‘ ks, (R), Diffusion (D), and
Heterotrophy (H):

Our work links climatic perturbations of surface water discharge as
a major control on riverbed sediment GSD, bioclogging, and
subsurface transformations. Results show that GHG production is
not only a function of surface ecology, but linked to the statistics of
extreme climatic events that control riverbed initial conditions.
These results provide a new understanding of nutrient cycling and
hotspot bioclogging in losing rivers where climatic extremes occur.
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