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Abstract

Study of Water Dynamics in the Soil-Plant-Atmospheric Continuum in a

Water-Controlled Ecosystem

by

Xingyuan Chen

Doctor of Philosophy in Engineering-Civil and Environmental Engineering

University of California at Berkeley

Professor Yoram Rubin, Co-Chair

Professor Dennis D. Baldocchi, Co-Chair

The study of water exchange between soil, plants, and the atmosphere in response to sea-

sonal or periodic droughts is critical to modeling the hydrologic cycle and biogeochemical

processes in water-controlled ecosystems. This dissertation consists of four essential parts

of water dynamics studies in an oak Savanna ecosystem.

The first study characterizes changes in evaporation and transpiration under water stress.

The influence of soil moisture on evapotranspiration at the stand scale is studied using

correlations between tower-based evapotranspiration measurements and representative soil

moisture obtained by aggregating point measurements. The observed pattern of this effect

is found in agreement with an existing model that features a linear reduction of the evap-
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otranspiration when soil moisture falls below a critical value. The model parameters are

inferred using a Bayesian framework and they are found to vary from year to year due to

climate variability. The comparison between various aggregations of soil moisture at the

stand scale from point measurements demonstrates that the spatial variability of the soil

moisture as well as the water uptake capacity limited by the root biomass need be taken

into account to produce a model that is most resistant to inter-annual variability.

The second study re-evaluated the theoretical basis of sap flow measurements using

heat ratio method, whose fundamental basis was built on an idealized solution to heat trans-

port process in sapwood. An improved solution is developed to model the same process

with more realistic assumptions. Extensive comparisons on the difference of calculated

temperature fields by idealized solution and improved solution reveal that most significant

discrepancy occurs around the early times, whereas the difference diminishes over late time

window. This study also present changes in the fundamental equation of heat ratio method

to account for asymmetric probe alignments in practice.

The third study is on determining probe geometry and wood thermal diffusivity for

sap flow measurements using heat ratio method. A statistical framework is presented to

simultaneously estimate wood thermal diffusivity and probe geometry from in-situ heat re-

sponse curves collected by the implanted probes of heat ratio apparatus. Conditioned on the

heat response data, the parameters are inferred using a Bayesian inversion technique with

Markov chain Monte Carlo (MCMC) sampling method. This procedure not only provides

a systematic yet non-destructive to estimate the crucial parameters for sap flow calculation,
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it also enables direct quantification of uncertainty in estimated sap flow velocity. Experi-

ments using synthetic data show that multiple tests on the same apparatus are essential to

obtain reliable and accurate solutions, and the uncertainty in posterior distributions of the

parameters is influenced by the prior knowledge on the probe geometry or heating power.

When applied to field conditions, multiple tests are conducted during different seasons and

automated using the existing data logging system. The seasonality of wood thermal diffu-

sivity is obtained as a by-product of the parameter estimation process, and it is affected by

both moisture content and temperature. Empirical factors are introduced to account for the

influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they

are estimated in this study as well. The proposed methodology is ready to be applied to

calibrate existing heat ratio sap flow systems at other sites. It is especially useful when

alternative transpiration calibration device such as lysimeter is not available.

The fourth study investigated how an individual plant adjusts transpiration under the

stressed conditions using continuous transpiration and soil moisture measurements. The

objective is to appropriately calculate the potential transpiration, which is often needed

in soil water dynamics models. The alternating conditional expectation (ACE) method is

implemented to identify the optimal functional dependence of bulk canopy conductance

on various environmental stresses including vapor pressure deficit, net radiation, and soil

moisture. A multiplicative form of stress functions is found to be appropriate for the tree

studied. The functional form of each individual stress is determined based on the optimal

transformations identified by the ACE method, and MCMC is then implemented to estimate
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the model parameters. The continuous transpiration and soil moisture data are also used

to investigate the water budget on the tree over the growing season of 2007. It is found

that tree transpires much more water than what is provided by the root zone soil water

during dry season, which is a strong evidence of tree tapping water from deeper soil and

groundwater in dry seasons. This factor need be accounted for in further soil dynamics

modeling by specifying appropriate boundary conditions.

Professor Yoram Rubin
Dissertation Committee Co-Chair

Professor Dennis D. Baldocchi
Dissertation Committee Co-Chair
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Chapter 1

Introduction

1.1 Problem Overview

In water-limited ecosystems, root zone soil water availability becomes a controlling

factor on water, carbon and nutrient cycles [Rodriguez-Iturbe et al., 2001b; Williams and

Albertson, 2004], and they are thus called water-controlled ecosystems. The study of water

dynamics in such ecosystems is not only critical for global hydrological cycle and climate

modeling, but also for assessing ecosystem functioning in response to seasonal or periodic

droughts [Knapp et al., 2002; Porporato et al., 2004]. Such study is increasingly becoming

more important as recent climate studies suggest that periodic droughts are likely to occur

more frequently, due to reduced rainfall frequency resulting from global warming [Bell

et al., 2004; Esterling et al., 2000]. In western America, the threat of droughts could be

even worse due to loss of mountain snowpack in projected future climate [Service, 2004].
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Study of water dynamics in water-controlled ecosystems requires an integrated ap-

proach that links biometeorology, biophysics, plant physiology and hydrology. The diffi-

culties in such studies arise from insufficient understanding of the nonlinear interactions be-

tween the various processes and their scale-dependence, and from ignoring multi-scale in-

teractions. Systematic multi-scale studies of water exchange in the soil-plant-atmospheric

continuum are still at very early stages, and require coordinated efforts of modeling de-

velopment and data acquisition at consistent scales [National Research Council (NRC),

2008]. New technology innovations from nano-materials to airborne and spaceborne re-

mote sensing sensors has made more variables accessible to measurements over a large

range of temporal-spatial scales [National Research Council (NRC), 2008]. Furthermore,

the emerging monitoring networks, such as FLUXNET [Baldocchi et al., 2001], have pro-

vided unique platforms for long-term multidisciplinary multi-scale study.

The purpose of this dissertation work is to develop a better understanding of water

transport in the soil-plant-atmospheric continuum under drought conditions, at scales rang-

ing from that of a plant (a few m2) to that of a stand (a few hundreds to a few thousands m2).

The primary focus is to investigate the regulation of plant water use by water deficits and

climatic conditions and its scale dependence. Models of water stress function are exam-

ined and calibrated at both plant scale and stand scale using water exchange data acquired

at both scales.

The data necessary for model calibration include the spatial and temporal measurements

of soil water content and water fluxes throughout the soil-plant-atmospheric continuum, as
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well as climate driving forces such as net radiation, humidity and air temperature, etc. The

data acquisition efforts will focus on a Mediterranean oak-savanna ecosystem, and it will be

introduced in details in the next section. The site experiences dry and hot summer annually,

which makes it ideal for water dynamics study in water-controlled ecosystems.

Data have been collected at the site since 2001, including meteorological variables

(e.g., solar radiation, air temperature, wind speed, etc), biophysical variables (e.g., leaf area

index, leaf water potential, etc), soil moisture contents, isotopes in water and CO2 sources,

as well as overstory and understory eddy fluxes of water vapor and CO2. In addition to

this on-going effort, and in support of my research goals at individual plant scale, plant-

scale measurements were installed in eight trees across the footprint of the overstory eddy

covariance tower. The specific measurements on an individual tree include multiple soil

moisture probes to monitor soil moisture profile vertically and laterally, soil temperature

probes for the purpose of energy balance and soil respiration calculations, and sap flow

sensors at different tree heights for measuring tree transpiration. More detailed descriptions

on the data collection activity are available in individual chapters that utilize specific data.

While the water vapor fluxes measured by the eddy covariance tower provides an es-

timation of water used by all the trees within the tower footprint, individual plant water

use is directly measured with sap flow sensors using heat-pulse technique. The heat pulse

technique uses a heat pulse as tracer and deduce the travel speed of water in porous me-

dia through the speed at which heat is transported. The heat pulse technique is known to

possess advantages of low power consumption, simple instrumentation and automated data
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collection [Green et al., 2003]. Among all the variations of the heat pulse technique, the

heat ratio method (HRM) introduced by Burgess et al. [1998] is chosen in this study due to

its capability of detecting reverse and low flow rates and its straightforward instrumentation

[Burgess et al., 2001].

The theoretical basis underlying HRM is an analytical solution to the heat transport

equation in tree sapwood derived by Marshall [1958]. The solution, however, was re-

lied on several idealized assumptions, which are routinely violated in real applications of

HRM. Therefore, an improved solution is developed to describe the heat transport process

in sapwood with more realistic assumptions and modifications to the original fundamental

equation of HRM is provided to account for the departure of field experimental setup from

the ideal setup.

Furthermore, the successful application of HRM depends on obtaining reliable estima-

tion of sapwood thermal diffusivity and probe geometry. The empirical estimation of wood

thermal diffusivity requires information on wood moisture content and wood bulk density,

which are usually obtained through intrusive core sampling. Exact spacing and geometry

of the HRM apparatus cannot be guaranteed during installation due to the nature of the

wood matrix, especially in hardwood species such as oak and maple. To assure the quality

of the sap flow measurements acquired from the experimental site, this dissertation study

also provides a systematic, non-destructive, and replicable methodology to determine wood

thermal diffusivity and probe geometry for the sap flow measurements using the heat ratio

apparatus. The estimation of these parameters is conditioned on the time series of tem-
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perature increases, i.e., temperature response curves, monitored by the downstream and

upstream temperature probes after a heat pulse is released by the central heating probe.

The primary advantage of the methodology is that it relies on the information that can be

obtained using the installed probes without any further disturbance to the tree.

The availability of new observations can improve our understanding of the complex

mechanisms related to water dynamics and thus enables newer model development. On

the other hand, it provides valuable information to model calibration. Successful model

calibration based on appropriate field data through inverse modeling may prove to be an

effective tool in studies of plant water uptake [Hopmans and Bristow, 2002; Green et al.,

2006]. One challenge in model calibration is to deal with uncertainties arising from various

sources. A Bayesian approach is often chosen in model calibration for its strengths in

dealing with uncertainties arising from various sources and in introducing assumptions and

prior knowledge of the parameters through prior distributions. Another unique advantage of

Bayesian approach is the availability of many powerful inference techniques [Gelman et al.,

1995], such as Markov chain Monte Carlo (MCMC) method, which are not available to

traditional statistical approaches. The Bayesian framework with MCMC sampling methods

have been successfully implemented in many areas of studies [Clark, 2005; Clark and

Gelfand, 2006; Crainiceanu et al., 2003; Reis and Stedinger, 2005; Smith and Marshall,

2008]. Therefore, it is adopted for model calibration in this dissertation.
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1.2 Experimental Site Information

All the field experiments involved in this dissertation were conducted at Tonzi Ranch,

which is an active FLUXNET site located on the lower foothill of the Sierra Nevada Moun-

tains (see Figure 1.1), near Ione, California (latitude: 38.4311◦N; longitude: 120.966◦W;

altitude: 177 m). The site is an oak savanna woodland with scatterings of grey pine trees.

According to the meteorological records, the mean air temperature of the region is 16.6◦C

and the mean annual precipitation is about 559mm, most of which occurs between October

and May [Baldocchi et al., 2004; Ma et al., 2007]. The uneven seasonal distribution of

precipitation leads to a wet and cold winter and a dry and hot summer at the study site.

The ecosystem at the site is comprised of a nonuniform distribution of trees and grasses.

The oak trees covers approximately 43% of the land at a scale up to 1km×1km around the

tall tower [Kim et al., 2006] based on a high-resolution IKONOS image as shown in Figure

1.2. A recent study based on LIDAR data finds the canopy coverage to be 47% within a

200m×200m area around the tower and the oak trees have heights of 9.3±4.3 meters [Chen

et al., 2008a]. The oak trees leaf out in the spring (around day 90) and rapidly reach full

photosynthetic potential until they senesce in the late autumn [Xu and Baldocchi, 2003].

The grasses, on the other hand, are active from late autumn to early summer and senesce

when soil water is depleted during the prolonged dry summer. The trees and grasses are

out of phase in their growing seasons with only a short overlap from April to early June.

Their different life cycles reflect various mechanisms to survive through seasonal droughts

in co-existing vegetation types.
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Figure 1.1: Location of experimental site overlaid on the California ecoregions map
(USEPA, 2000)
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The soil at Tonzi is an Auburn very rocky silt loam [Sketchley, 1965]. Our survey at

49 locations over a 200 m × 200 m area found that the soil is composed of 49 pm 3%

sand, 36 ± 2% silt and 15 ± 1% clay (soil samples analyzed at the Division of Agriculture

and Natural Resources Analytical Soils Laboratory, University of California-Davis). Well

logs reveal that the soil layer is about 1.0 m thick and is overlaid on fractured greenstone

bedrock.

1.3 Chapter Organization

This dissertation is organized in the following way: Chapter 2 presents observations

and stochastic modeling of soil moisture control on evapotranspiration in the experimen-

tal site. This study uses data collected at stand scale and discusses the controlling role of

soil moisture on evapotranspiration from trees, grasses and the entire community. Chap-

ter 3 revisits the theoretical basis of sap flow measurements using HRM and revises the

fundamental equation of HRM to account for departure of field conditions from idealized

ones. Chapter 4 presents a statistical technique to estimate key parameters for estimat-

ing tree transpiration from the sap flow measurements. This study is conditioned on time

series data of temperature rise responding to a heat pulse. Chapter 5 studies response of

whole-plant transpiration to soil and atmospheric water deficit using data collected on an

individual tree. A summary is provided in Chapter 6.
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Chapter 2

Observations and Stochastic Modeling

of Soil Moisture Control on

Evapotranspiration in a Californian Oak

Savanna

1

1This chapter is based on a published article in Water Resources Research, Vol 44, W08409, doi:
10.1029/2007WR006646
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2.1 Introduction

Oak savanna ecosystems in California are subject to soil water stress during the pro-

longed dry summer seasons. In such water-limited ecosystems, root zone soil water avail-

ability becomes a controlling factor on water, carbon and nutrient cycles [Rodriguez-Iturbe

et al., 2001b; Williams and Albertson, 2004]. Therefore, characterization of changes in

evaporation and transpiration under water stress is essential to understand the dynamics in

the soil-plant-atmosphere continuum [Feddes et al., 2001; Feddes and Raats, 2004; Teuling

et al., 2006]. Eventually these processes will contribute to the studies of the hydrological

cycle including the computation of water budgets [Milly, 1993; Botter et al., 2007] and

to the studies of biogeochemical processes in similar ecosystems [Porporato et al., 2003;

D’Odorico et al., 2003].

The impacts of soil water stress on water and carbon exchange processes have been

studied experimentally and have been incorporated into various modeling efforts [Baldoc-

chi et al., 2004; Dewar, 2002; Feddes et al., 1978; Katul et al., 2003”; Rodriguez-Iturbe

et al., 2001b; Tuzet et al., 2003; Williams and Albertson, 2004, 2005]. A piecewise linear

function of the dependence of evaporation and transpiration (ET) on soil moisture, shown in

Figure 2.1, is especially appealing for its simplicity and its applicability in a range of plant

functional types at leaf and stand scales [Feddes et al., 1978; Federer, 1979; Gollan et al.,

1985; Paruelo and Sala, 1995; Spittlehouse and Black, 1981]. This model will be referred

to as Feddes Model in the subsequent discussion. The Feddes Model has been adopted

in many studies as an a priori assumption with the parameters selected from literature
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Figure 2.1: Regulation of soil moisture on ET (After Feddes, 1978; Laio et al., 2001)

[Guswa et al., 2002; Laio et al., 2001; Miller et al., 2007] due to the lack of concomitant

observations of ET and soil moisture at matching scales.

Although the Feddes Model has been found efficient in many cases, the actual ET be-

havior could be different and more complex [Lagergren and Lindroth, 2002] due to the non-

linear interactions between the soil, plants and the atmosphere and their scale-dependence.

This behavior is further complicated in savannas by the coexistence of woody and herba-

ceous species, by their open heterogeneous canopies and their competition for the limited

water resources [Scholes and Archer, 1997]. All these are elements which are not in line

with the underlying assumptions of the Feddes Model.

There is only a limited body of research on the effects of soil moisture on ET in sa-
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vannas [Detto et al., 2006; Williams and Albertson, 2004]. Therefore, the objective of our

study is to examine experimentally the applicability of the Feddes Model in a Californian

oak savanna for modeling the effect of water stress on ET of single functional types and of

their mixture at the stand scale, and to gain, through this investigation, a broader perspec-

tive on the myriad of related issues. Specific questions that we will address include: (1) Is

the Feddes Model applicable to oak savannas with heterogeneous open canopies? This is

an important question in the context of modeling water dynamics in savanna ecosystems

because ET is a crucial component in water cycling and its change under water stress needs

be taken into account in modeling; (2) How do trees and grasses in the oak savanna respond

differently to the water stress? Heterogeneity in soil moisture in savanna is both cause and

consequence of tree-grass coexistence [Rodriguez-Iturbe, 2000]. To capture the effects of

soil moisture’s spatial variability in water dynamics modeling, it is essential to investigate

how trees and grasses, as individual functional types, use water under seasonal droughts;

(3) Is the Feddes Model stationary in time? This is an important issue when the model char-

acterizing soil moisture’s control on ET is to be used in water dynamics modeling, because

large inter-annual variability of parameters would deteriorate the predictive capabilities of

models validated using historic records of undetermined duration. This specific study has

not been possible until recently, when multi-year data from the FLUXNET sites became

available; (4) What soil moisture data is needed for modeling water stress at the stand scale

and what are the alternatives for aggregating point measurements of soil moisture to the

spatial averages at the stand scale? The answer to this question will be useful for guiding
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the acquisition of soil moisture field data needed for model validation and prediction.

To address these questions, the observed actual ET from eddy covariance towers will

be evaluated as a function of soil moisture and potential ET. The partition of ET between

woody and herbaceous species is allowed through the deployment of overstory and under-

story eddy flux towers. A Bayesian framework with Markov chain Monte Carlo (MCMC)

method that has been applied successfully in many fields [Clark, 2005; Clark and Gelfand,

2006; Crainiceanu et al., 2003; Reis and Stedinger, 2005] is adopted to parameterize the

model that describes controlling effect of soil moisture on ET, taking into account the un-

certainties in model parameters and in field measurements. The inter-annual variability

in the dependence of ET on soil moisture for heterogeneous environment as well as its

components is analyzed using multi-year data. The parameterized model is used for pre-

dicting the actual ET with uncertainty estimates determined using the joint distribution of

the parameters derived from the Bayesian framework.

2.2 Data Acquisition

A broad suite of data types have been collected at the Tonzi Ranch since 2001, including

meteorological variables (e.g., solar radiation, air temperature, wind speed, precipitation,

etc), biophysical variables (e.g., leaf area index, leaf water potential, etc), soil moisture,

as well as overstory and understory eddy fluxes of water vapor and CO2 [Baldocchi et al.,

2004; Xu and Baldocchi, 2003]. The meteorological variables are needed for estimating
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reference ET assuming sufficient water supply, which is called potential ET. The eddy

covariance measurements of water vapor flux were taken through a 23m-high overstory

tower and are viewed as representing the ET from the mixture of trees and grasses within its

300m×300m fetch. In addition, eddy covariance measurements from a 2m-high understory

tower were also taken, and are viewed as representing the ET from the understory grasses

and soil surface. The difference in water vapor fluxes between the overstory and understory

towers is a measure of transpiration by trees. All the measurements by the two towers were

averaged at half an hour basis.

Soil moisture at the site has been monitored using both segmented time-domain reflec-

tometry (TDR) probes (Moisture Point, model 917, Environmental Sensors, Inc., Victoria,

British Columbia) and Theta probes (Delta-T Devices, model ML2-X, Cambridge, UK).

These technologies are described in detail in Blonquist et al. [2005]. The TDR probes were

installed at nine locations as shown in Figure 1.2, and each probe measures the average

volumetric soil water content at depths between 0-15, 15-30, 30-45 and 45-60cm. Among

the nine TDR probes, five were installed under tree canopies and four in the open spaces.

TDR measurements were taken weekly or bi-weekly during field visits. Theta probes were

installed under a tree near the tall eddy flux tower at depths of 5, 20 and 50cm, and contin-

uous soil moisture measurements were taken at half-hour interval.
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2.3 Theoretical Background

To describe the degree to which the actual ET in the ecosystem is limited by soil wa-

ter availability, ET measured by the eddy covariance tower is compared to a reference ET

under sufficient water supply, i.e., potential ET. The latter is approximated by the Priestley-

Taylor (P-T) equation [Priestley and Taylor, 1972] as shown in the following equation,

Ep = β ·Eeq = β · 1
λ

s(Rn−G)
s+ γ

, (2.1)

where Ep is the potential ET, Eeq is the equilibrium ET, β is a scaling factor that depends

on vegetation type and climatic conditions, Rn is the net radiation, G is the ground heat

flux density, λ is the latent heat of vaporization of water, s is the derivative of the saturated

vapor pressure against temperature and γ is the psychrometric constant.

The actual ET is assumed to be a fraction of the potential ET due to water deficit

[de Bruin, 1983; Laio et al., 2001; Mahfouf et al., 1996; Rana and Katerji, 2000; Williams

and Albertson, 2004], i.e.,

Eact = α(θ) ·Ep, (2.2)

where α(θ) is the reduction coefficient of ET as a function of soil moisture. The form of

α(θ) is not assumed as prior knowledge but will be examined and compared to the Feddes
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Model using field data in our study. The analytical form of the Feddes Model is

α(θ) = min
{

1,max
{

0,
θ−θ∗1
θ∗2−θ∗1

}}
(2.3)

where θ∗1 is normally referred to as permanent wilting point at which plants stop ET and θ∗2

is the critical soil moisture value below which ET is limited by available soil moisture.

The P-T coefficient, β of Eq. (2.1), is not directly measurable. The value of β is

often taken as 1.26 for a wet surface [Priestley and Taylor, 1972]. However, the actual

value could deviate significantly from 1.26 depending on the canopy structures and atmo-

spheric conditions [Baldocchi and Meyers, 1998; de Bruin and Keijman, 1979; Hikaru,

2005; Jones, 1992; McNaughton and Spriggs, 1986]. Therefore, β is considered as an un-

known constant in our study, and the form of α(θ) will be evaluated through a surrogate

variable, the ratio between the actual ET and the equilibrium ET, defined as

R(θ) =
Eact

Eeq
= α(θ)β. (2.4)

R(θ) is clearly a rescaled form of α(θ) with β being the value of R(θ) under no soil water

stress. All the variables required to determine R(θ) are directly measured by the eddy

covariance towers. It is thus natural to extract the form of α(θ) from the observations of

R(θ).

To examine the form of α(θ), it is also necessary to determine whether a representative
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soil moisture exists at the stand scale that can be used for a stand-scale Feddes Model, and

to estimate it from point measurements. The details are discussed in next section.

Once the general form of α(θ) is determined from observations, the next step is to

identify the model parameters. In most studies, the parameters that describe the effect of

soil moisture on ET are viewed as deterministic values, although in most cases they are

adopted from the past work on similar ecosystems or derived from limited field data. Un-

certainties could arise from many sources in addition to their inherent variability, such as

measurement errors, model errors from incomplete understanding of the underlying mech-

anism, and disparity in measurement scales and modeling scales. A probabilistic approach

based on Bayesian concepts is adopted in this study to learn model parameters considering

various uncertainties. A detailed description of the method can be found in the Appendix

A.

2.4 Results and Discussions

2.4.1 Micrometeorological Observations and Soil Moisture

The data acquired between 2003 and 2005 were employed in this study. The first three

plots in Figure 2.2 present time series of averaged daytime (8am-6pm) available energy

(Rn −G), air temperature, relative humidity and daily precipitation, all of which show

strong seasonal patterns. The summer is characterized by high temperature and available

energy, low humidity with essentially no precipitation.
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Figure 2.2: Meteorological conditions, soil moisture and measured ET at the Tonzi site.
The plots from top to bottom are daytime available energy, daytime air temperature,
daytime relative humidity and daily precipitation, depth-averaged soil moisture (the se-
ries labeled as overall is the averaged measurements by all TDR probes), and measured
evapotranspiration
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Two types of soil moisture data are available at the site: periodic TDR measurements

distributed within the footprint of eddy covariance tower and continuous Theta probe mea-

surements at a point. Recognizing their difference in temporal and spatial resolutions, the

spatial averages of TDR measurements in a depth segment were regressed on the daily av-

erages of the Theta probe measurements within the same depth range, using a robust linear

approach. The resulting regression lines as shown in Figure 2.3 were used to interpolate

the periodic TDR measurements to continuous ones. More regression results for years from

2003 to 2005 can be found in Appendix B. The interpolation was carried out independently

for spatial averages of all TDR measurements, for those of measurements taken under tree

canopies and for those taken in the open spaces. The overall averages of soil moisture mea-

surements represent the soil water available to the entire ecosystem, while the averaged

soil moisture under tree canopies and those in the open spaces are considered as the soil

water available to trees and grasses, respectively. Although some tree rooting systems tend

to extend beyond the edges of canopy [Casper et al., 2003] and can deplete water from

the intercanopy areas [Lefever and Lejeune, 1997; Yokozawa et al., 1998; Lejeune et al.,

1999; Rietkerk et al., 2004], there does not seem to be extensive lateral exploration of roots

beyond the canopy edge at our site based on the soil respiration study [Tang and Baldocchi,

2005]. The soil moisture measurements at different depths for the entire area, understory

area and open spaces from 2003 to 2005 are averaged vertically and are given in the third

plot of Figure 2.2, which demonstrates contrasting wet and dry conditions in winter and

summer. The interpolated average soil moisture values are considered to better capture



21

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
T

D
R

 m
ea

su
re

m
en

ts

0−15cm: average of TDRs under canopy

y=−0.00+0.86x
data
regression

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

y=−0.03+0.93x

15−30cm: average of TDRs under canopy 

T
D

R
 m

ea
su

re
m

en
ts

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

y=−0.01+0.94x

30−45cm: average of TDRs under canopy

Theta probe measurements

T
D

R
 m

ea
su

re
m

en
ts

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

y=−0.06+1.13x

45−60cm: average of TDRs under canopy

Theta probe measurements

T
D

R
 m

ea
su

re
m

en
ts
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data on half-hour basis. TDR measurements are averages calculated from TDRs located
under tree canopies. The regression equations are shown along with the regression lines.

the spatial and temporal variability at the stand scale, and this will be demonstrated in the

further analysis of this study.

Figure 2.2 also presents the observed ET time series for trees, the understory layer and
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the overstory layer within the footprint of the overstory eddy covariance tower. The un-

derstory’s ET includes ET from the grasses under tree canopies and in the open spaces, as

well as evaporation from the soil surface, whereas the overstory’s ET contains ET from the

understory layer as well as ET from the trees. Although the fetch of the understory eddy

covariance tower is smaller than that of the overstory tower [Baldocchi, 1997], the obser-

vations by the understory tower are assumed to be representative of the entire understory

layer within the fetch of the overstory tower. The ET of trees is higher than the overstory’s

ET because it was calculated as the difference between the overstory’s ET and understory’s

ET, normalized by tree canopy coverage (taken as 40%).

The plots are enlarged for 2003 in Figure 2.4 to better demonstrate their seasonal pat-

terns within the year. The seasonality of ET is controlled by the available soil moisture,

plant physiology and the atmospheric demand [Baldocchi and Xu, 2007]. It can be ob-

served from Figure 2.4 that the ET from the ecosystem follows an upward trend as the

atmospheric demand increases until the soil water supply can no longer meet the demand,

which is the point when soil moisture starts to limit ET. The understory’s ET stops earlier

than the tree’s ET due to the shallow root profile of grasses. The tree’s ET, on the other

hand, is observed to continue while the soil moisture at the top 60cm barely changes, which

indicates that trees may tap deeper water sources [e.g., Lewis and Burgy, 1964]. We also

found in Figures 2.2 and 2.4 that scattered summer rains trigger pulses in ET measured by

both towers without visible change in soil moisture, which implies that summer rains are

mostly intercepted by the tree or grass canopies and are evaporated to the atmosphere.
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Figure 2.4: Meteorological conditions, soil moisture and measured ET at the Tonzi site in
2003. The plots from top to bottom are daytime available energy, daytime air tempera-
ture, daytime relative humidity and daily precipitation, depth-averaged soil moisture (the
series labeled as overall is the averaged measurements by all TDR probes), and measured
evapotranspiration
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2.4.2 Soil Moisture Effects on ET

Calculated Eact/Eeq

The ratio, R(θ) = Eact
/

Eeq, was calculated from the meteorological and ET observa-

tions following equations (2.1), (2.2) and (2.4) for the understory layer, for the overstory

layer and for the trees, and the corresponding results are provided in Figure 2.5. Only

daytime ratios were taken into the analysis, excluding rainy and cloudy days that are not

covered by the potential ET model or by the eddy covariance technology. The small val-

ues of Eact
/

Eeq for the trees and for the overstory layer in winter and early spring are

primarily due to the underdevelopment of tree foliage that are not taken into account in

the Priestley-Taylor equation to determine the potential ET and the insufficient available

energy because of the low solar radiation. Therefore, the estimation of α(θ) used only the

observations between the last spring rain and the first winter rain in the same year, during

which soil moisture can be considered as the dominating limiting factor. These periods are

highlighted in Figure 2.5 by the double arrows on top of the scatters.

Influence of representative soil moisture

Soil moisture at the site varies horizontally between canopy and inter-canopy patches

as a result of the open nature of the canopy. It is recognized that trees and grasses use

different amount of water under the same atmospheric condition and trees obtain moisture

from deeper soil storage than grasses do. These two facts lead to the vertical heterogeneity

of soil moisture in addition to its horizontal heterogeneity. To obtain a representative soil
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moisture value at the stand scale from the point measurements, the aggregation strategies

in horizontal and vertical directions have impacts on accounting for contributions of point

soil moisture to the overall stand-scale soil moisture. We examined in this study various

averaging techniques to compute the representative soil moisture values as well as their

effectiveness in describing soil moisture control on stand-scale ET.

We first assumed that only the soil moisture data measured by the Theta probes were

available, and the arithmetic averages of measurements at three depths were adopted as

the representative soil moisture values. The plots of Eact
/

Eeq against this representative

soil moisture as shown in Figure 2.6 display considerable variations from year to year, yet

with each year following a pattern remarkably similar to the Feddes Model. Some large

values of Eact
/

Eeq under very dry soil moisture conditions are due to scattered summer

rainfall events, which were intercepted by the tree and grass canopies and evaporated into

the atmosphere soon after.

Secondly, the representative soil moisture was taken as the vertical arithmetic average

of spatially distributed TDR measurements. The dependence of Eact
/

Eeq on this represen-

tative soil moisture is depicted in Figure 2.7, which shows much less inter-annual variability

compared to Figure 2.6, especially for trees. The trend of each single year again follows

similar pattern as the Feddes Model.

It is observed in Figure 2.7 that in the understory layer the dependence of Eact
/

Eeq on

soil moisture in 2005 deviates considerably from those in 2003 and 2004. This discrepancy

is possibly caused by the unusually large amount of precipitation occurring prior to the
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summer drought in 2005 as demonstrated in Figure 2.2. The frequent spring rainfall events

allow the percolation of water to deeper soils that is not accessible to grasses. The open

space soil moisture at depths between 30 and 60cm in the summer of 2005 is found to be

significantly higher compared to the summers of 2003 and 2004, while the soil moisture at

the top 30cm shows more consistent pattern of behavior over time. By taking an arithmetic

average of soil moisture at four depths up to 60cm, the soil water available to the grasses

was overestimated. In other words, an effective representation of soil water available to

the plants should account for the vertical variation in water uptake capacity limited by the

rooting depth.

An alternative to arithmetic averaging of vertical soil moisture profile is to weigh the

soil moisture at various depths by the fractions of roots present in the corresponding depths

[Baldocchi et al., 2004], i.e.,

〈θ〉=

z∫
0

θ(z)dP(z)

z∫
0

dP(z)
, (2.5)

where P(z) is the cumulative distribution of root biomass from the surface to depth z (in

centimeters) and an exponential model based on extensive field surveys [Jackson et al.,

1996], P(z)=1-βz , was assumed for oak trees and grasses at the Tonzi site. The β value

of the grasses was chosen to be 0.94 based on the data provided in Jackson et al. [1996],

which yields 84% of roots in the top 30cm and 13% in 30-60cm. For the oak trees, β value

of 0.976 is inferred from the finding that 70% of excavated root biomass of a blue oak tree

is located above 0.5 m on average [Ishikawa and Bledsoe, 2000].
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The relationship between Eact
/

Eeq and root density weighted representative soil mois-

ture is provided in Figure 2.8, where the pattern of the understory layer shows less inter-

annual variability compared to the cases when the arithmetic averages of soil moisture at

various depths were used. Linear decay patterns are visible for the understory and overstory

layers and for the trees. The Feddes Model can thus be applied to generalize the impact of

soil water availability on ET at the Tonzi site.

The comparisons among various representations of soil moisture at the stand scale

found that the least inter-annual variability of soil moisture effects on ET was yielded when

the root density weighted average of distributed TDR measurements were taken as the rep-
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resentative soil moisture. This result suggests that a single-point soil moisture measurement

is not sufficient to represent the soil moisture status at a stand scale because it is not able to

capture the heterogeneity of soil moisture field. Settin et al. [2007] reports similar findings

through numerical studies. For this reason, spatially distributed soil moisture data collec-

tion is preferred at the stand scale. Furthermore, root biomass distribution profile plays an

important role in causing the vertical variation in water uptake capacity of the plants, and

its influence ought to be taken into account in averaging the vertical soil moisture profile.

2.4.3 Parameterization Results and Discussions

As the applicability of the Feddes Model to characterize the effects of soil moisture

on ET appears suitable for the understory and overstory layers and for the trees in the oak

savanna ecosystem, we proceed here by identifying its parameters using WINBUGS [Lunn

et al., 2000].

In applying the WINBUGS software for inference, multiple chains of the parameters

were simulated in parallel and the modified Gelman-Rubin convergence diagnostic statis-

tics [Brooks and Gelman, 1998] were used to test the effective convergence of the samples.

Each chain had a sample size of 100,000 parameter sets with the first 50,000 realizations

discarded to obtain a stationary distribution. One sample out of every 20 samples was se-

lected to assure the independence among samples. The resulting pool of samples was con-

sidered being drawn from the joint posterior distribution of the parameters. The marginal

distribution of each parameter can be approximated from the joint posterior samples by
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using the kernel density estimator [Venables and Ripley, 2003].

The marginal distributions of the parameters in the Feddes Model, β, θ∗1 and θ∗2 (see

Figure 2.1 and equations (2.1), (2.2), and (2.3), conditioned on the root density weighted

soil moisture are given in Figure 2.9 for the overstory’s, understory’s and trees’ ET in

years 2003, 2004 and 2005. Compared to the uniform prior distributions assigned to the

parameters as shown in the Appendix, the posterior distributions are bounded by narrower

ranges with well-defined peak densities, which implies a reduction in uncertainty. Some of

the parameters, for instance, θ∗2 for the understory layer in 2005, have multi-modal posterior

distributions, which is an advantage of the MCMC method over most traditional parameter

estimation methods.

In Figure 2.9, the inter-annual variability of the inferred parameters is evident from

the differences in their marginal distributions from year to year. In addition to the natural

variability, the inter-annual variations of model parameters could arise from the variations

in seasonal precipitation distribution patterns, because the timing and amount of a rainfall

event strongly affect how it will be partitioned, and different functional types use the avail-

able water in different ways depending on how stressed they are prior to the rainfall event

[Burgess, 2006; Rodriguez-Iturbe, 2000]. The precipitation time series given in Figure 2.2

demonstrated that 2005 has much longer raining season compared to 2003 and 2004, and

the precipitation amounts prior to the summer droughts in 2003 through 2005 are 395mm,

409mm and 717mm, respectively. It is noted that the understory layer experiences larger

variability than the trees, possibly because the grasses are less able to tackle the change in
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the ambient environment, such as change in the frequency and amount of precipitation, due

to their shallow rooting depth.

It is interesting to note that from 2003 to 2005, θ∗1 and θ∗2 of the understory layer were

moving closer to each other, whereas those of trees were moving in the opposite direction.

This might indicate that grasses and trees respond differently to changes in water availabil-

ity. Grasses tend to rapidly use up the available water resources, reflected by lower θ∗2 and

higher θ∗1, during wetter years. However, trees adopt a more conservative strategy. They

started to control ET under moister soil during wetter years so that their ET can persist into

drier soil conditions. This finding is in agreement with Rodriguez-Iturbe et al. [2001a].

The rapid depletion of water for the grasses is partly due to the fact that the superficial soil

water in the grassland evaporates and grasses have very little control over it. However, the

trees have more control over transpiration through their physiological structure. For ex-

ample, their xylem can impose hydraulic conductance limitations during period of higher

water availability to avoid dysfunction during drought [Eamus et al., 2000], which is also

known as safety-efficiency trade-off [Tyree et al., 1994]. Trees can also control water loss

through the opening and closing of their stomata, which is observed on the oak trees at our

site [Xu and Baldocchi, 2003]. It is also possible that the variation in seasonal precipitation

alters the fine root distribution of the grasses and trees [Wan et al., 2002], and the effect

could be very different on trees and grasses as they compete for the same water resources.

The weighting factors used to aggregate point soil moisture to stand-level average might be

adjusted to cope with the inter-annual variability of the Feddes Model parameters. Further
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experimental evidence is needed to address the effects of precipitation distribution pattern

on the plant responses to seasonal droughts in oak savanna.

2.4.4 Predicting ET with Calibrated Model

Each set of the sampled parameters from the MCMC method represents a realization

of the Feddes Model fitted to the data. The inclusion of all realizations produced by the

algorithm defines the variability in the parameterized model, as demonstrated in Figure

2.10. Rather than identifying an optimal fit of the model, the Bayesian inversion technique

with the MCMC sampling scheme yields a range of possible models, which can then be

used for statistical interpretation of the observations.

For instance, the realizations of the fitted model as shown in Figure 2.10 can be used

to predict the actual ET with known meteorological variables and soil moisture. For given

conditions, each realization of the Feddes Model leads to a realization of predicted ET, and

consequently, a complete distribution of the predictions can be determined using a large

number of realizations. As an example, the model calibrated using data in 2003 is used

to predict the overstory’s, understory’s and trees’ ET between the last spring/early summer

rain and the first winter rain in 2004 and 2005. The results are presented in Figure 2.11. The

comparisons between the predictions and the observed ET by the eddy covariance towers

reveal that the model predicts the actual ET during the dry seasons fairly well, with the

mean values being around the one-to-one line. Part of the misfit is due to the inter-annual

variability of the parameters.
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2.5 Conclusions

We discussed in this chapter how soil moisture controls actual evapotranspiration in a

water-limited oak savanna ecosystem located in California, and examined the applicability

of the Feddes Model for describing the effects of water stress on ET of the heterogeneous

environment as well as its components, using multi-year field observations at the daily,

stand scale.

The influence of soil moisture on actual ET was investigated through the dependence

of the ratio between ET, as measured by the eddy covariance towers, and the potential

ET, as approximated by the Priestley-Taylor equation, on representative soil moisture. The

observed relationship was compared to the pattern suggested by the Feddes Model in or-

der to evaluate its applicability in the oak savanna ecosystem. Various representations of

soil moisture at the stand scale, obtained from point measurements at various locations and

depths were investigated. The model parameters were inferred using a Bayesian framework

with the MCMC sampling method and their inter-annual variability was studied based on

the difference in posterior marginal distributions from year to year. Finally, the parameter-

ized model was used for predicting actual ET with uncertainty estimates determined using

the joint distribution of the parameters derived from the Bayesian framework.

The Feddes Model was found to be in agreement with the observed patterns of soil

moisture effects on ET regardless of whether the heterogeneous environment of trees and

grasses was homogenized or treated as the sum of its individual components. However,

the parameters of the Feddes Model varied with time. Grasses have lower θ∗2 and higher
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θ∗1 during wetter years, whereas trees have the opposite trend, i.e., they start to control ET

under moister soil (higher θ∗2) during wetter years so that their ET persists into drier soil

conditions (i.e., lower θ∗1). This inter-annual variability is primarily driven by variations in

the seasonal precipitation distribution pattern from year to year, as well as the responses of

various plant functional types to changes in soil water availability. Grasses tend to rapidly

use up the available water resources during the wetter years because they have little control

over the evaporation, whereas trees are able to control water loss by limiting the xylem

hydraulic conductance and by controlling their stomata. This difference in responses can

also be a result of change in fine root distributions due to water availability in early seasons.

The selection of representative soil moisture leads to considerable difference in the

inter-annual variability of model parameters. Among the various averaging schemes tried

in this study, including (1) the arithmetic average of soil moisture measurements at different

depths obtained at one location, (2) the arithmetic average of the spatially distributed soil

moisture measurements at different depths and (3) the root density weighted average of the

distributed soil moisture measurements at different depths, the last scheme yielded the most

consistent behavior of the Feddes Model over time. The study demonstrates that distributed

sampling of soil moisture is necessary to study the effects of soil moisture availability

on ET in open canopy ecosystems. Furthermore, the soil water availability at different

depths has a different influence on the total ET depending on the fraction of root biomass

present at the corresponding depths. This difference can be accounted for by using the root

density weighted average of the vertical soil moisture profile to produce representative soil
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moisture.

The inter-annual variability of climate brings inherent variability to model parameters

in addition to parameter uncertainties arising from measurement errors and an incomplete

understanding of the underlying physical mechanisms. It is thus insufficient to assign deter-

ministic values to model parameters without identifying the associated uncertainties. The

parameter estimation methodology presented in this study, a Bayesian framework based

on the MCMC sampling method, provides a systematic tool to quantify the parameter un-

certainties conditioned on field observations and to directly estimate the prediction uncer-

tainties using the model parameterized in this way. We calibrated the Feddes Model using

data from 2003 and predicted the actual ET in 2004 and 2005 with quantified uncertainty.

The comparison between the predicted and measured ET showed good agreement. The

calibrated Feddes Model can be incorporated into the water balance equation to study wa-

ter dynamics at the stand scale and eventually to better understand the water cycle in a

heterogeneous environment.

This study developed a methodology to model the changes in ecosystem ET under

drought conditions and to statistically parameterize the model using field data. The suc-

cessful application of the methodology in the complex oak savanna ecosystem inspires its

employment in other water-limited ecosystems.
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Chapter 3

Theoretical Analysis for Sap Flow

Measurements using Heat Ratio Method

3.1 Introduction

Heat pulse method is widely employed to measure water use by trees [Cohen et al.,

1981; Granier, 1985; Swanson, 1994; Smith and Allen, 1996; Green et al., 2003]. It works

by deducing sap flow rate from the speed at which a short heat pulse is propagated through

the porous medium. The heat pulse technique has the advantages of simple instrumentation

and lower power consumption. Among the numerous variations of the heat pulse technique,

heat ratio method (HRM) introduced by Burgess et al. [1998] has been widely applied in

various fields due to its ability to detect reverse and low flow rates and its straightforward

instrumentation [Burgess et al., 2001]. The apparatus for the HRM consists of a pair of
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thermocouple probes located equidistantly upstream and downstream from a heating ele-

ment as depicted in Figure 3.1. The probes are parallel and aligned in a common plane.

The heat pulse velocity in HRM is deduced from the ratio of temperature increases

recorded at downstream and upstream temperature probes, following the release of a heat

pulse by the central heating element. The theoretical basis underlying HRM is an analyti-

cal solution to the heat transport equation developed by Marshall [1958], which is derived

under idealized assumptions. For instance, the porous medium is assumed unbounded and

homogeneous, and heat is instantaneously released from an infinite line source. However,

these assumptions are routinely violated in real applications of HRM, e.g., tree sapwood

and heating element are of finite dimension rather than being infinite, and heat is not re-
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leased instantaneously but over a duration of time. The departure of the real conditions

from the ideal assumptions may result in different temperature field around the heating

element, and consequently affect the theoretical basis of HRM.

The objectives of this study are to (1) develop a solution to the heat transport process

in tree sapwood with more realistic assumptions, (2) compare the difference in temperature

fields approximated by Marshall’s idealized solution and our more realistic solution, and (3)

provide modifications if necessary to the fundamental equation of HRM based on improved

understanding of the heat transport process.

3.2 Theory

3.2.1 Heat transport equation in sapwood

Wood is considered as a porous medium composed of cellulose, a solid fraction forming

the vessel walls, and sap, a liquid filling the void space. The heat released from the central

heating element is transported away by conduction and convection. Assuming sap water is

moving uniformly in the x−direction and wood is thermally homogeneous and isotropic,

the heat transfer process can be described as [Carslaw and Jaeger, 1959; Gribben, 1999]

∂T
∂t

= κ
(

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
− vh

∂T
∂x

+Qδ(x)δ(y)δ(z)δ(t) (3.1)

where T is temperature rise, t is time, κ is the thermal diffusivity of the wood matrix, and

x, y, and z are space coordinates, Q represents the heat source term, and δ(·) is the Dirac



43

function. The heat pulse velocity, vh, is related to sap velocity, vs, by the following equation

defined by Marshall [1958],

avs =
ρwcw

ρscs
vh (3.2)

where a is the fraction of the cross-sectional area of conducting sapwood occupied by

moving sap streams and ρ and c are density and specific heat capacity, with the subscript s

referring to sap and w referring to wood matrix. The volumetric sap flux density per unit

cross-sectional area of sapwood is given by Js = avs.

3.2.2 Marshall’s solution

Marshall [1958] derives an analytical solution to Eq. (3.1) considering instantaneous

heat released from an infinite line source normal to the x− y plane and passes through the

point (x,y) = (0,0), in an infinite medium at uniform initial temperature, which is

T (x,y, t) =
q

4πρcκt
exp

[
−(x− vht)2 + y2

4κt

]
(3.3)

where q is the quantity of heat released per unit length.

If temperature increase is measured at points equidistant downstream and upstream

from the line source, the heat pulse velocity can be derived from Eq. (3.3) as

vh =
κ
x

ln
Td

Tu
(3.4)

where x is the distance between the heater and either temperature probe, Td and Tu are

temperature increases measured at x cm downstream and upstream from the heater, respec-
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tively. Eq. (3.4) is the theoretical basis of HRM [Burgess et al., 2001]. An example of

temperature increases measured using the HRM apparatus and the calculated temperature

increase ratios is shown in Figure 3.2.

3.2.3 Improved solutions

Ren et al. [2000] present another solution for Eq. (3.1) based on the same assumptions

as Marshall’s except that the instantaneous heating is replaced by a heat pulse lasting from

0 to t0, which is a better representation of the heat source in practice. Their solution is



45

T (x,y, t) =
q′

4πρcκ

∫ t

t−t0
s−1 exp

[
−(x− vhs)2 + y2

4κs

]
ds (3.5)

where q′ is the quantity of heat released per unit length per unit time and t0 is the duration

of heat pulse. This solution is for t > t0.

It is further studied in Wang et al. [2002] that Eq.(3.5) can also lead to eq. (3.4) when the

temperature probes are aligned symmetrically about the heater probe. If asymmetry occurs,

Eq. (3.4) asymptotically approaches the heat pulse velocity using average distance between

the probes as x. Therefore, it is recommended that the ratios of temperature increases

should be calculated at a time when its value has reached a constant.

However, the assumptions of an infinite medium and an infinite line source correspond-

ing to Marshll’s and Ren’s solutions are not satisfied in sap flow applications. To account

for the finite width of the sapwood, Gribben [1999] developed a solution for the tempera-

ture increases following an instantaneous heat release from a linear line source as

T (x,y,z, t) =
q

πρcκt
exp

[
−(x− vhs)2 + y2

4κt

] ∞

∑
n=1

sin(bnL)cos(bnz)
2bnL+ sin(2bnL)

exp
(−κbn

2t
)

(3.6)

where L is the depth of the sapwood and the line source is assumed to extend through the

entire sapwood depth, and bn is obtained by solving the equation, tan(bL) = K/b, with

(n−1)π/L < bn < (2n−1)π/(2L).

In deriving Eq. (3.6), it is assumed that geometry in the vicinity of the heating element

is flat since length of heating element is much smaller than the tree radius, and no heat flow

boundary and Newton’s Law of Cooling are applied at the bark (z = 0) and at the boundary
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between sapwood and heartwood (z = L), respectively, i.e.,

∂T
∂z

= 0 at z = 0 (3.7)

∂T
∂z

+KT = 0 at z = L (3.8)

where K is the parameter describes how fast the surface cools and it is not expected to be

known because the solution is not sensitive to its values [Gribben, 1999].

Based on Gribben’s solution, we further replace the instantaneous heat source with

a pulsed one, and add the flexibility that the length of line source can be shorter than

the sapwood depth. Skipping the evolving steps, our final solution based on the realistic

assumptions is obtained as follows,

T (x,y,z, t) =
q′

πρcκ

∞

∑
n=1

sin(bna)cos(bnz)
2bnL+ sin(2bnL)

∫ t

t−t0
s−1 exp

[
−(x− vhs)2 + y2

4κs
−κbn

2s
]

ds

(3.9)

where a is the length of line source. To ensure the no heat flow boundary at the tree bark,

it is recommended to insulate the tree bark around the sap flow apparatus in field.

In all the solutions presented here, sap is assumed to flow uniformly through the porous

medium that is at uniform initial temperature. In addition, the flow deformation caused by

the implanted probes is not considered, assuming that the size of the probes is infinitesi-

mally small compared to the tree size.
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Figure 3.3: The temperature increases calculated from various theoretical models. Our
solution is labeled as Chen’s

3.3 Results and Discussions

3.3.1 Comparison of calculated temperature fields

It is demonstrated in the previous section that the various solutions to heat transport pro-

cess differ in their fundamental assumptions, which may consequently lead to differences

in their calculated temperature fields around the line source. Figure 3.3 shows an example

of temperature rises calculated from various theoretical models at 0.6 cm downstream (x =

0.6 cm) and upstream (x = -0.6 cm) from the line source assuming κ = 0.0030 cm2/s, vh =

30 cm/hr, y = 0.0 cm, z = 1.0 cm, L = 7.0 cm, a = 3.0 cm, and t0 = 6 s. It is evident from

this example that significant differences among the solutions mostly occur at early times,

say, before the arrival of peak, while the differences at late times are negligible.

However, the differences among these solutions may vary with probe geometry, wood

thermal diffusivity, heat pulse velocity as well as the sapwood depth. Therefore, an in-depth
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investigation is conducted on how the aforementioned parameters affect the difference in

calculated temperature rises caused by the theoretical models. As the largest difference is

anticipated between the Marshall’s solution and our solution, the comparisons are focused

on these two models, and their relative difference is calculated as |(T Marshall−TChen
)
/TChen|.

Influence of vertical probe distance (x)) and heat pulse velocity (vh)

Assuming values of κ, y and z are fixed at 0.0030 cm2/s, 0.0 cm and 1.0 cm, respectively,

the change of relative difference in temperature rise in sapwood with a depth of 7 cm is

shown in Figure 3.4 as a function of time and x-locations. The difference is found to

be symmetric about the x values. Therefore, only results for positive x values are provided

here. It is observed that most of the significant differences occur in the early times for all the

cases represented in the plots. In addition, the early-time difference is observed to increase

with probe spacing in x-direction. Nevertheless, this trend can be reversed around the time

approaching the minimum difference, which is dependent on both the probe spacing and

heat pulse velocity.

It is evident in Figure 3.4 that, at a fixed location, the heat pulse velocity affects the de-

creasing rate of difference in the early times, the time for the difference to reach its asymp-

totic value, as well as the magnitude of the asymptotic difference. The example shown in

Figure 3.5, extracted from Figure 3.4 for x = 0.6 cm, exhibits that the difference decreases

with heat pulse velocity in early times, whereas the asymptotic difference increases with

the heat pulse velocity. It is noticed that, for t >40 s, the difference corresponding to any
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Figure 3.4: Difference in temperature rise between Marshall’s solution and our solution as
affected by x−location and heat pulse velocity for L = 7 cm, κ = 0.0030 cm2/s, y = 0 cm,
and z = 1.0 cm. The difference is calculated as |(T Marshall−TChen

)
/TChen|.
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Figure 3.5: Difference in temperature rise between Marshall’s solution and our solution as
affected by heat pulse velocity for L = 7 cm, κ = 0.0030 cm2/s, x = 0.6 cm, z = 1.0 cm, and
vh = 30 cm/hr. The difference is calculated as |(T Marshall−TChen

)
/TChen|.

heat pulse velocity is less than 3%, which may be considered negligible.

In addition, it is noted that the minimum differences in the plots are not the exact ones,

which should be zero (−∞ in log-scale) when two solutions meet. Nevertheless, the time

corresponding to the minimum difference is close to the true ones. Except for these cases

corresponding to small values of x and vh, the solutions of Marshall’s model and our model

meet only once after the arrival of peak.
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Figure 3.6: Difference in temperature rise between Marshall’s solution and our solution as
affected by y-coordinate for L = 7 cm, κ = 0.0030 cm2/s, x = 0.6 cm, z = 1.0 cm, and vh =
30 cm/hr.The difference is calculated as |(T Marshall−TChen

)
/TChen|.

Influence of lateral position (y)

In both Marshall’s solution and our solution, y-coordinate of the measurement point

is a necessary component to derive its temperature rise. As revealed in Figure 3.6, the

difference of temperature rise between two solutions is influenced by values of y. With the

other parameters being fixed, the difference at early times increases with the y value, while

same asymptotic value will be reached when elapsed time is sufficiently long. At t >60 s,

the difference is within 2% and 10%, respectively, for y≤ 0.6 cm or otherwise.
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Figure 3.7: Difference in temperature rise between Marshall’s solution and our solution as
affected by y-coordinate for L = 7 cm, κ = 0.0030 cm2/s, x = 0.6 cm, y = 0.0 cm, and vh =
30 cm/hr.The difference is calculated as |(T Marshall−TChen

)
/TChen|.

Influence of radial depth (z)

One of the key differences between two solutions is that Marshall’s solution is two-

dimensional, while ours is three-dimensional. The coordinate along z-direction represents

the relative position to finite line source and the distance to boundaries. Therefore, the

impact of z on the difference of two solutions may be more complex than x and y due to

the interacting effects of boundary conditions and finite length of line source. The example

provided in Figure 3.7 proves that there is no clear trend of the difference against z. The

largest difference is yielded at the mid-point of the line source at z = 1.5 cm when t > 40 s,

whereas the difference in the same time frame for other z values is smaller.
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Figure 3.8: Difference in temperature rise between Marshall’s solution and our solution as
affected by the sapwood depth for κ = 0.0030 cm2/s, x = 0.6 cm, y = 0.0 cm, z = 1.0 cm,
and vh = 30 cm/hr. The difference is calculated as |(T Marshall−TChen

)
/TChen|.

Influence of sapwood depth (L)

The influence of sapwood depth on the solution difference is related to the assumptions

of infinite medium and infinite line source in Marshall’s solution. For a typical range of

sapwood depth from 5 cm to 11 cm, the example presented in Figure 3.8 illustrates that

the asymptotic difference at t > 60 s increases with sapwood depth, while the decay of

difference with time is very slow for small sapwood depth, e.g., L = 5.0 cm, compared to

the other depths considered. The reason may be that boundary effects is more dominant in

small sapwood depth, whereas the inappropriate assumption of infinite line source plays a

more significant role in medium to large sapwood depths.
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30 cm/hr. The difference is calculated as |(T Marshall−TChen

)
/TChen|.

Influence of thermal diffusivity (κ)

An example showing the impact of κ on solution difference is given in Figure 3.9. The

range of κ value is chosen based on the calculation provided in Appendix D, which shows

that the wood thermal diffusivity at the site may vary between 0.0025 and 0.004 cm2/s in

response to various wood densities and moisture conditions. Larger difference is observed

in Figure 3.9 for smaller κ value in early times. However, the trend is reversed for t > 50

s, and at the same time, the difference caused by varying κ value is diminishing with time.
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3.3.2 Impacts on HRM

It is of interest to investigate whether the estimation of the heat pulse velocity based

on our improved solution differs from that based on Marshall’s solution. As presented in

the previous section, the difference between two solutions is normally negligible at late

times. It can be expected that Eq. (3.4) is still valid for symmetric probe alignment if

the temperature increase are recorded at late times, say over 60-100s following the heat

pulse. It is confirmed true using the extensive data for comparing solution difference in the

preceding section.

Nevertheless,the probe geometry in practice can depart from the ideal alignment as-

sumed to derive Eq. (3.4): the probe spacing may not be symmetric in x-direction and the

three probes outlined in Figure 3.1 may not lie in the same plane in y-direction. In order

to examine the applicability of Eq. (3.4) under arbitrary probe alignments, the data in the

previous section are used to create numerous combinations of probe geometry and the heat

pulse velocity is found to be linearly related to κ
x ln Td

Tu
, i.e.,

vh = B0 +B1
κ
x

ln
Td

Tu
(3.10)

where B0 and B1 are empirical factors, x is the average distance of downstream and up-

stream temperature probes from the line source, and Td and Tu are average temperature

increases over 60s ≤ t ≤ 100s measured by the downstream and upstream temperature

probes, respectively. The average temperature increase is used to calculate the ratio in the

consideration that temperature increase is usually small for t > 60s, especially at the up-
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stream probe. As a result, random noise in individual temperature measurement may lead

to unreliable result of ratio.

Further study shows that B0 and B1 are mainly controlled by the geometry asymmetry,

while the other parameters, including κ, L, and z, have no significant impact. The contour

plots in Figure 3.10 demonstrate that B0 and B1 are nearly linearly related to xd − xu and

y2
u− y2

d , while there is no noticeable difference caused by varying z values. It is also noted

from the plots that B1 only varies slightly around 1, whereas B0 can be as large as 30 cm/hr.

Linear regression of B0 and B1 on probe geometry along with κ, L, and z confirms that

κ, L, and z are not significant factors, and the regression equations are obtained as

B0 =−0.031+22.35xd−21.91xu−44.77
(
y2

u− y2
d

)−0.42xdxu

+26.55xd
(
y2

u− y2
d

)
+27.39xu

(
y2

u− y2
d

)−19.77xdxu
(
y2

u− y2
d

) (3.11)

B1 =
[
100+1.32xd−1.30xu−2.66

(
y2

u− y2
d

)−2.10xdxu

+1.58xd
(
y2

u− y2
d

)
+1.63xu

(
y2

u− y2
d

)−1.18xdxu
(
y2

u− y2
d

)]×10−2
(3.12)

where xd and xu are both taken as their absolute values. Both equations yield R2 value of

0.999, which is a sign of good fitting to the data.

3.4 Conclusions

This study re-evaluated the theoretical basis of sap flow measurements using HRM.

The fundamental equation of HRM was originally derived from Marshall’s solution to heat
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transport process in sapwood with idealized assumptions. we developed an improved solu-

tion to the same process with more realistic assumptions. More specifically, the sapwood

was considered bounded porous medium, the line source had finite length, which may or

may not extend through the entire sapwood depth, and the heat was released from the line

source over a duration. Extensive comparisons on the difference of calculated temperature

fields by Marshall’s solution and our solution revealed that most significant discrepancy

occurs around the early times, whereas the difference is negligible at later times, say t >

60 s. It is therefore recommended that when employing HRM the temperature increases

should be measured in this late time window.

Furthermore, the fundamental equation of HRM was derived on the basis of symmetric

probe alignment. In practice, however, the probes can be misaligned during the installation

process, even if the probes were carefully installed with a drilling guide. Due to this prac-

tical consideration, this study also investigated whether the fundamental equation of HRM

was changed under asymmetric probe alignments. With the numerical data generated from

our solution, which cover a wide range of possible sapwood properties and probe align-

ments, a significant shift from the true heat pulse velocity may be resulted from the asym-

metric alignment if the heat pulse velocity is estimated by the HRM equation for symmetric

probe alignment. Therefore, the fundamental equation of HRM can be slightly changed to

include an interception (B0) and slope (B1) to account for this asymmetry. Linear regres-

sion of B0 and B1 on sapwood properties and probe alignment found that B0 and B1 can be

accurately determined by probe geometry in x- and y- directions. The implementation of
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this revised HRM equation is shown in next chapter.

This study not only improves our understanding of the underlying principles of HRM,

but also provides sounding evidence that the fundamental equation of HRM can only be

slightly adjusted to account for the departure of real conditions from the idealized one.

These findings are the solid base for our choice of HRM in monitoring tree transpiration.
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Chapter 4

On Determining Wood Thermal

Diffusivity and Probe Geometry Using

In-Situ Heat Response Curves for Sap

Flow Measurements

4.1 Introduction

The sap flow method has long been used to measure transpiration by individual plants

[Barrett et al., 1995; Burgess et al., 2001; Cermak et al., 1973; Chandra et al., 1994;

Kluitenberg and Ham, 2004; Marshall, 1958; Swanson and Lee, 1966], and has a history

of applications in hydrology, forestry, ecology, agriculture, and horticulture [Cohen et al.,
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1988; Cohen and Li, 1996; Eastham and Gray, 1998; Fernandez et al., 2001; Wilson et al.,

2001]. The transpiration measurement at individual tree by the sap flow technique not only

provides sounding evidence to study the plant response to ambient stresses or disturbances

such as drought and irrigation [Cermak et al., 1993; Duursma et al., 2008; Dye, 1996;

Oren et al., 1999; Poyatos et al., 2008; West et al., 2008], it can also be upscaled to areal

transpiration [Cermak et al., 2004; Cienciala et al., 1999; Crosbie et al., 2007; Granier

et al., 1996; Saugier et al., 1997; Whitley et al., 2008]. The sap flow method has contributed

significantly to studies of nighttime transpiration [Dawson et al., 2007; Fisher et al., 2007]

and hydraulic redistribution in root zone [Burgess et al., 2000; Kurz-Besson et al., 2006;

Nadezhdina et al., 2006; Scott et al., 2008], both of which are important to understanding

plant water use in semiarid regions. A recent special issue in Plant and Soil [Burgess,

2008] provides a comprehensive review of new developments and applications of the sap

flow method.

In general, there are three major thermometric techniques used to measure sap flow:

heat pulse, heat balance, and heat dissipation. In all the three techniques heat is used as a

tracer but in different ways: With the heat pulse technique, sap flow rate is measured by

determining the speed at which a short heat pulse is propagated through the porous medium;

With the heat balance technique, sap flow rate is determined from the vertical heat loss by

convection, which is calculated from the balance of heat fluxes into and out of the heated

stem section. Heat can either be externally applied to the entire circumference of the trunk

or be internally applied to a segment of the trunk on large trees. Finally, with the thermal
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dissipation technique, which is often known as the Granier method [Granier, 1985], an

empirical equation is used to relate the sap flow rate and temperature difference between

two thermocouple probes that are about 10 cm apart, and constant power is applied to the

heater that is put together with the thermocouple probe on the top. We refer readers to the

work of Smith and Allen [1996] for a review of the underlying theories of these techniques

and to Swanson [1994] for a review of the history of their use.

This study focuses on the heat pulse technique, which has advantages of low power

consumption, simple instrumentation and automated data collection. Green et al. [2003]

provide a detailed review of its theory and practical applications. Among the variations of

the heat pulse technique, the heat ratio method introduced by Burgess et al. [1998] has been

widely applied due to its ability to detect reverse and low flow rates and its straightforward

instrumentation [Burgess et al., 2001]. The apparatus for the heat ratio method consists

of a pair of thermocouple probes located equidistantly upstream and downstream from a

heating element as shown in Figure 3.1.

When measuring the sap velocity using the heat ratio method, it is critical to know the

thermal diffusivity of the wood matrix and the distance of the thermocouple probes from

the heater probe. While thermal diffusivity may be estimated from the core samples of the

sapwood [e.g., Scott et al., 2008] or calculated from measurements of stem water content

and sapwood density [e.g., Burgess et al., 2001], many studies do not report how thermal

diffusivity values are chosen. Given the exact probe spacing, the wood thermal diffusiv-

ity can be estimated using the methodology developed by the soil science community to
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determine soil heat properties using the heat pulse technique [Bristow et al., 2001, 1994;

Campbell et al., 1991]. Nevertheless, the exact spacing and geometry of the probes cannot

be guaranteed in practice even when the probes are carefully installed, due to the nature of

the wood matrix. This problem is especially prevalent in hardwood species such as oak and

maple. Considering the fact that the estimation of sap flow rates is sensitive to the probe

spacing, e.g., a 1-mm error in probe spacing can cause more than 10% difference in the

estimated sap flow rates, Burgess et al. [2001] suggest a correction procedure for the probe

misalignment. However, it is dependent on obtaining zero-flow conditions, which is either

assumed to happen at night or is achieved by cutting down trees. Therefore, there is a need

for in-situ and non-destructive approach to determine both the wood thermal properties and

probe geometry, in order to improve the accuracy of the sap flow measurements with the

heat ratio method.

The objective of our study is to provide a systematic, non-destructive, and replicable

methodology to determine wood thermal diffusivity and probe geometry for the sap flow

measurements using the heat ratio apparatus. The estimation of these parameters is condi-

tioned on the time series of temperature increases, i.e., temperature response curves, mon-

itored by the downstream and upstream temperature probes after a heat pulse is released

by the heater probe. The temperature response curves are controlled by the combination of

thermal diffusivity, probe geometry, and convective velocity, which is in turn a function of

wood thermal diffusivity, probe geometry, and the ratio of temperature increases detected

by the downstream and upstream probes. Thus the wood thermal diffusivity and probe
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geometry may be inversely estimated provided the temperature response curves taken at

downstream and upstream locations from the heater probe. The primary advantage of the

methodology is that it relies on the information that can be obtained using the installed

probes without any further disturbance to the tree.

The difficulties in parameter estimation procedure may arise from various sources,

among which the most important one is the uncertainties rooted in the measurement error

of the temperatures and the inadequacy of selected model to approximate the heat trans-

port process in wood stem. Therefore, a Bayesian inversion framework with Markov Chain

Monte Carlo (MCMC) sampling scheme is chosen for its strengths in dealing with uncer-

tainties arising from various sources and in combining prior knowledge of the parameters

to be estimated [Clark, 2005; Clark and Gelfand, 2006]. Empirical factors are adopted to

account for the departure of the field conditions from the idealized conditions that form

the theoretical basis of the heat ratio method, and they are estimated together with wood

thermal diffusivity and probe geometry.

4.2 Materials and Methods

4.2.1 Data acquisition

The heat ratio apparatus employed in this study consists of three 3-cm-long hypodermic

needles, two of which are temperature probes and one is the heater probe with a resistance

around 20 ohms. For each temperature probe, there are two thermocouple junctions in-
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stalled at two different depths, 1 cm and 2.5 cm into the sapwood, respectively, to capture

the radial variation of sap flow. The upstream and downstream temperature probes were

installed to as close to 0.6 cm equidistantly from the central heater probe as possible. Each

tree had two sets of sensors, one at breast height (around 1.5 m from the ground) and the

other close to ground (around 0.3 m from the ground). Both sets were installed on the

north side of the tree when possible to minimize the influence of diurnal bole temperature

fluctuation, and all sensors were insulated with aluminum foil.

For each test, a 12-15 V voltage was applied on the heater probe for six seconds to gen-

erate the heat pulse. Temperature traces were recorded every two seconds until 100 s after

the heat pulse stopped. The temperature increases were calculated by subtracting the initial

temperature taken before the onset of the heat pulse from the temperature traces. The test

was repeated in different seasons because wood thermal diffusivity may vary throughout

the year due to the change of stem water content and ambient temperature.

4.2.2 Parameter Estimation Method

It has been investigated in Chapter 3 that the heat pulse velocity is linearly related to the

ratio of temperature increases recorded between 60-100 s following the heat pulse, with the

empirical factors determined by the probe geometry. Asymmetry in probe geometry usually

results in a shift in the estimation of heat pulse velocity. In addition to such correction for

non-ideal probe geometry, flow deformation imposed by the implanted probes is found

to underestimate the heat pulse velocity using heat pulse technique [Burgess et al., 2001;
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Swanson and Whitfield, 1981]. Empirical factors are thus introduced to correct for the

wounding effects as well as the difference in thermal properties of wood and probe material.

It is studied in Burgess et al. [2001] that a linear correction function performs as well as a

polynomial one. Therefore, we adopt a linear correction factor, W , then the corrected heat

pulse velocity is vch = Wvh with vh determined by equation (3.10).

Reliable sap flow estimation using HRM relies on the determination of appropriate pa-

rameter values. Here we discuss how to determine the parameters to calculate vh: empirical

factors (B0 and B1), wood matrix thermal diffusivity (κ), and the geometry of probe instal-

lation (xd , xu, yd , and yu), while the estimation of wounding correction factor (W ) is not

considered. The parameter estimation is conditioned on the heat response curves measured

by the downstream and upstream temperature probes following the release of a heat pulse.

Given a set of heat response curves taken downstream and upstream as shown in Figure

3.2, it is assumed that they can be described by the Marshall’s analytical solution with

the heat pulse velocity determined from Eq. (3.10). The ratio of temperature increases

downstream and upstream is calculated from the temperature increases measured over 60-

100s following the heat pulse, and a noise is added to simulate the measurement error in

practice. Then, the parameters are selected on the basis of model fitting to the time series

data.

In order to deal with the uncertainty involved in measured heat response curves and

to facilitate the proceeding uncertainty analysis using the derived parameters, Bayesian

inversion technique with the Markov Chain Monte Carlo (MCMC) sampling method is
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adopted for parameter estimation. This framework is implemented in the WINBUGS soft-

ware [Lunn et al., 2000], which is a powerful tool for Bayesian inverse modeling with open

access. A more detailed description of the estimation procedure can be found in Chen et al.

[2008b]. Multiple chains of the parameters were simulated in parallel and the modified

Gelman-Rubin convergence diagnostic statistics [Brooks and Gelman, 1998] were used to

test the effective convergence of the samples. Each chain had a sample size of 45,000 pa-

rameter sets with the first 40,000 realizations discarded to obtain a stationary distribution.

One sample out of every ten was selected to assure the independence among samples. The

resulting pool of samples was considered realizations of the joint posterior distribution of

the parameters. The marginal distribution of each parameter was approximated from the

joint posterior samples by using the kernel density estimator [Venables and Ripley, 2003].

Details in MCMC implementation can be found in the appendix.

4.3 Results and Discussions

4.3.1 Model verification

The performance of the proposed parameter estimation framework depends on two im-

portant factors: one is whether Marshall’s analytical solution is appropriate to describe the

heat transport process in sapwood for a specific application; the other is whether the pro-

posed framework is able to find the true parameter values if no model error is present. The

latter can be tested using synthetic response curves generated from Eq. (3.3) with known
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κ, vh, xd , xu, yd , and yu. The parameters estimated using our proposed framework can then

be compared to their true values. Furthermore, the sensitivity of estimated parameters to

their prior knowledge can be investigated using the synthetic data.

Marshall [1958] mentions that the solution to a given heat response curve may not be

unique, i.e., different combinations of κ, vh and x may produce the identical heat response

curves. To overcome this problem, heat response curves from multiple tests are used rather

than a single curve. Each test consists of a pair of curves, as shown in Figure 3.2, which

share same κ and vh. All the tests are conducted on the same set of probes, i.e., they have

same xd , xu, yd , and yu. The heat pulse velocity corresponding to each test is determined by

κ and x through Eq. (3.10). With these extra constraints, we anticipate to achieve parameter

distributions centered around their true values if no model error is present.

The synthetic case to verify the parameter estimation framework contains three tests

for a probe set with xd= 0.5 cm, xu= −0.7cm, yd = 0.1 cm, and yu = 0.2 cm. The thermal

diffusivity for each test is 0.0030, 0.0035, and 0.0028 cm2/s, and the heat pulse velocity for

each test is 30, 15, and 10 cm/hr, respectively. The heat released by the heater is set at 12

J/cm. The density and specific heat capacity of fresh wood are set at 1530 kg/m3 and 1500

J/(kg·oC), respectively. In this formulation, xu is negative because the x-coordinate of Eq.

(3.3) has an origin at the heater probe and points downstream.

Assuming amount of released heat, wood density, and wood specific heat capacity are

known, the inferred posterior distributions of the parameters are presented in Figure 4.1,

where the limits of x-axis are the bounds imposed on the parameters as prior distributions,
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and the true parameter values and their posterior means are represented by the solid and

dashed vertical line, respectively. The results demonstrate that our parameter estimation

process significantly reduces the parameter uncertainty after conditioning the parameter

values on the observed heat response curves. All the inferred parameters except B1 are

have tight distributions around their true values. For the estimated thermal diffusivities,

both the mean and mode of the posterior distributions are close to the true values. Whereas

for probe geometries, modes of the posterior distributions are closer to the true values

although the mean value still provides a good estimate. Given that only square terms of

yu and yd are involved in the analytical models of the heat transport process, y2
u and y2

d are

estimated rather than yu and yd .

Each set of sampled parameters from the MCMC method yields an estimation of heat

pulse velocity using Eq. (3.10), and ultimately, a possible model fit to the data through

Eq. (3.3). Inclusion of a large number of alternative parameter sets defines the uncertainty

in model fitting as well as the estimated heat pulse velocity, which is a key step in field

applications of the heat ratio method. The distribution of estimated heat pulse velocities

and uncertainty in model fitting for the test case are shown in Figure 4.2, from which we

can observe that the model fittings to the data are with a narrow uncertainty range, and the

estimated heat pulse velocities are distributed closely around the true values.

However, it is not surprising that the heat amount, wood density, and wood specific

heat capacity are not known exactly in actual applications, because the heat loss may not

be easily estimated without detailed analysis of the complete circuit and knowledge of how
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Figure 4.1: Posterior distributions of parameters with known heat amount, wood density
and wood specific heat capacity. The limits of x-axis represent the bounds imposed on
parameters as prior distributions. The solid vertical lines represent the true parameter values
and dashed vertical lines are the mean values calculated from the posterior distributions.
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Figure 4.2: Model fitting and statistical distribution of estimated heat pulse velocities for
the test case with known heat amount, wood density, and wood specific heat capacity. In
the left panel, each solid line represents a model fit to the data by a parameter set from the
MCMC method. In the right panel, solid vertical lines represent the true heat pulse veloci-
ties and dashed vertical lines are the mean values calculated from the posterior distributions.
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wood density and specific heat capacity change with stem moisture content, which is usu-

ally not measured in situ. In such case, q/(ρc) in Eq. (3.3) is defined as another unknown

parameter, C, and it can be estimated along with other parameters in our framework.

For the same test case that yield results in Figures 4.1 and 4.2, its counterpart with un-

known C lead to the results in Figures 4.3 and 4.4, where the uncertainty levels in estimated

parameters and heat pulse velocities, as well as in the model fitting increase by introducing

uncertainty into C. The results also show that our framework tends to slightly overestimate

C values, which causes overestimation in κ and vh. Nevertheless, in all three tests the mean

values of κ and vh provide reasonable estimations of their underlying true values.

We also studied the case assuming that the true probe geometry is known, in which very

accurate estimates of C, κ, and vh are obtained as shown in Table 4.1. The estimated pa-

rameters are provided as their mean values plus or minus their standard deviations. We can

therefore conclude that, provided with the exact probe geometry, the parameters estimated

by the proposed method converge to the true values with low uncertainty.

It is worth mentioning that the Least-Square estimator is likely to converge to wrong

parameter values when neither C or probe geometry is known, yet provides near perfect

model fits to the data. This observation indicates the existence of multiple solutions under

such conditions. On the other hand, it shows the necessity of using Bayesian technique to

characterize statistical distributions of the parameters rather than an optimized set, which

might be biased.
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Figure 4.3: Posterior distributions of parameters with unknown heat amount, wood density
and wood specific heat capacity. The solid lines represent the true parameter values and
dashed vertical lines are the mean values calculated from the posterior distributions.

Table 4.1: Parameters estimated by MCMC method with known probe geometry compared
to true values

Parameter True value Estimated

Test 1
C(oC · cm2) 0.416 0.412 ± 0.006
κ(×10−3cm2/s) 3.0 3.0 ± 0.034
vh(cm/hr) 30.0 30.0± 0.5

Test 2
C(oC · cm2) 0.416 0.413± 0.006
κ(×10−3cm2/s) 3.5 3.5± 0.054
vh(cm/hr) 15.0 15.0± 0.4

Test 3
C(oC · cm2) 0.416 0.412± 0.005
κ(×10−3cm2/s) 2.8 2.8± 0.036
vh(cm/hr) 10.0 10.0± 0.4
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Figure 4.4: Model fitting and statistical distributions of estimated heat pulse velocities for
the test case with unknown heat amount, wood density, and wood specific heat capac-
ity. In the left panel, each solid line represents a model fit to the data by a parameter set
from the MCMC method. In the right panel, solid vertical lines represent the true heat
pulse velocities and dashed vertical lines are the mean values calculated from the posterior
distributions.
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4.3.2 Applications to field data

Our field tests were conducted on days 221, 234, 251,297, 315 and 329 in year 2007.

When the data were used for parameter estimation, Marshall’s model was adopted to fit the

heat response curves for its simplicity and computational efficiency in repeated sampling

required by the MCMC scheme. We accounted for the significant discrepancy between

Marshall’s idealized model and our more realistic model in calculating early-time temper-

ature increases, by using only the temperature increases measured at times greater than 20s

following the heat pulse. The change in mean and standard deviation of the inferred wood

thermal diffusivity over test period is shown in Figure 4.3, along with the precipitation and

wood temperatures when the tests were conducted. It can be observed that the mean value

of wood thermal diffusivity changes over the dry period, while in wet period, it changes

only slightly. The uncertainty associated with the inferred thermal diffusivity is steady over

the season.

The seasonality of the wood thermal diffusivity can be related to the wood moisture

content, wood temperature, and wood porosity [Steinhagen, 1977; Suleiman et al., 1999;

Simpson and TenWolde, 1999]. In general, wood thermal diffusivity decreases with wood

moisture content and wood porosity while increases with temperature. The example in Ap-

pendix C shows dependence of wood thermal diffusivity on wood moisture content. The

temperature effect is found negligible using the calculation procedure outlined in Appendix

C. It is demonstrated in Figure 4.5 that wood thermal diffusivity changes more significantly

in the dry period than in the wet period, which might be related to shrinkage of tree trunk
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during the prolonged summer drought. However, our data were limited to late growing sea-

son and winter, tests covering the entire year may better reveal the complex dependence of

wood thermal diffusivity on moisture content and wood temperature. While conducting the

heat response experiment, taking core samples of sapwood or recording tree diameters can

help to relate the seasonal change of wood thermal diffusivity to those factors. Measuring

wood thermal diffusivity on the samples would facilitate model validation as well.

The fitting of the Marshall’s model with the calibrated parameters to the data of the first

three tests is shown in Figure 4.6. Evidently, the fitting is good despite the discrepancies at

the beginning, which is expected because the Marshall’s model tends to overestimate the

temperature increases at the early times.

Also available in Figure 4.6 are the statistical distributions of the estimated heat pulse

velocity associated with each experiment, which show slow flows around 10 cm/hr. Such

direct assessment of uncertainties in measured heat pulse velocity by the proposed frame-

work is of great importance in real applications, because it facilitates further uncertainty

assessment in applications using the sap flow data, which is discussed in detail in next

chapter.

4.4 Conclusions

The heat pulse method is widely used to measure water flux in plants and soil and is

valued for its simple instrumentation and easily automated data collection. However, no
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systematic, non-destructive calibration procedure has yet been developed to determine the

site-specific parameters necessary for calculating sap velocity, i.e., wood thermal diffusivity

and probe geometry. In-situ parameter calibration is important in sap flow measurements

since the wood diffusivity can be affected by wood moisture content, wood temperature,

and wood porosity, and the probes can be misaligned during installation due to drilling

difficulties. Such parameter calibration is crucial to obtaining the correct transpiration

amount from the sap flow measurements at the plant scale, and consequently affects the

up-scaling of water flux modeling of the soil-vegetation-atmosphere continuum.

In this study, we presented a statistical framework to estimate these parameters from

in-situ heat response curves collected by the implanted probes of heat ratio apparatus. Con-

ditioned on the heat response data, the parameters were inferred using a Bayesian inversion

technique with Markov chain Monte Carlo sampling method. Experiments using synthetic

data showed that multiple tests conducted on the same apparatus can be used to obtain re-

liable statistical distributions of probe geometry as well as wood thermal diffusivity. The

uncertainties in the estimated parameters can be reduced by introducing additional knowl-

edge on heat amount input to the system or probe geometry.

The wood thermal diffusivity is known to be affected wood moisture content, wood

temperature, and wood porosity. Therefore, addressing seasonality of the wood thermal

diffusivity is an important task in sites that experiences contrasting seasons. The parameter

estimation framework proposed in this study can be used to obtain such seasonality by

conducting heat response experiments over different seasons. In our field site, the wood
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thermal diffusivity is found to change more significantly in the dry period than in the wet

period. However, the tests were limited to late growing season and winter, we expect that

the seasonality of the wood thermal diffusivity can be studied thoroughly by conducting

tests over the entire growing season and with complimentary measurements such as taking

core samples of sapwood or recording changes in stem diameter.

The primary advantages of the proposed methodology are threefold: (1) it does not

require known probe geometry or any further intrusive sampling of sapwood, unlike most

other existing work. All the unknown parameters are inverted using the heat response

curves collected by the implanted probes. (2) The Bayesian framework enables direct

quantification of uncertainty in estimated sap flow velocity, which can further facilitate

the uncertainty assessment in water balance study or upscaled water flux involving the sap

flow measurements. (3) Empirical factors are used to relate the heat pulse velocity to the

ratio of temperature increases under asymmetrical probe alignment and these factors were

estimated in this study. With the empirical factors, we were able to model the heat transfer

in sapwood with a simple analytical solution derived on the basis of idealized assumptions,

which fits the observed heat response curves fairly well.

The proposed methodology is ready to be applied to calibrate existing heat ratio sap

flow systems at other sites. It is highly recommended that any study involving sap flow

measurements take temperature response curves routinely to improve the data accuracy. It

is especially useful when alternative transpiration calibration devices such as lysimeters are

not available.
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Chapter 5

Monitoring and Modeling Water

Dynamics at Plant Scale

5.1 Introduction

Conceptual understanding and mathematical modeling of water dynamics in water-

limited ecosystems have been extensively researched in hydrological and meteorological

studies. As vegetation plays a critical role in uptaking water from soil and transport it

to the atmosphere, many efforts are invested on understanding and modeling the change

of water uptake by plant roots subjected to water stress. Hydrological and meteorological

studies usually adopt different strategies. Many hydrological studies focus on the root-zone

water balance, and the root water uptake is considered as a sink term in water budget [e.g.,

Feddes et al., 1978, 2001; Laio et al., 2001; Guswa et al., 2002; Clemente et al., 1994;
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Feddes and Raats, 2004; Vrugt et al., 2001]. In these studies, a potential transpiration is

calculated or specified depending on meteorological conditions and vegetation type, then

this amount is distributed to different soil layers based on root density, finally the amount

assigned to each layer is modified in presence of water stress, using a piece-wise linear

reduction factor similar to Figure 2.1. This approach has also been incorporated into nu-

merical models of soil water and solute transport, such as SWAP [van Dam et al., 2008],

and HYDRUS [Šimünek et al., 2005, 2008].

One drawback of the aforementioned approach in hydrological studies is that the cal-

culation of potential ET does not take into account other environmental stresses, such as

solar radiation and temperature stresses, even though mechanistic model such as Penman-

Monteith (P-M) equation [Monteith and Unsworth, 1990] is sometimes implemented (e.g.,

SWAP model). On the other hand, meteorological studies often assume that plants adjust

their transpiration rates under stressed conditions by means of stomatal conductance, and

stomata respond to various environmental stresses including solar radiation, temperature,

vapor pressure deficit, and soil moisture [Jones, 1992]. When P-M equation is applied

to a tree canopy or to a larger scale, all the transpiring and non-transpiration leaves are

treated as if a big leaf, and the bulk conductance is modeled as a function of environmental

stresses, whose effects are assumed to be multiplicative in most empirical studies [Jarvis

and McNaughton, 1986]. Therefore, there is a need to connect the hydrological studies

on soil water dynamics to the meteorological studies on plant transpiration under stressed

condition, such that the soil water stress can be distinguished from the other environmental
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stresses and the potential plant transpiration can be calculated appropriately.

Another difficulty in soil water dynamics modeling is to specify the boundary condi-

tions. The top boundary condition is relatively easier since it is either infiltration or soil

evaporation, which can be measured and modeled. However, the bottom boundary condi-

tion is less known due to the difficulty of obtaining measurements. It has been a common

practice to assume a free drainage or no flux boundary at bottom [e.g., Laio et al., 2001;

Guswa et al., 2002; Vrugt et al., 2001], and these options are provided in models like

SWAP and HYDRUS. Nevertheless, the boundary conditions may be more complicated in

semi-arid ecosystems as many studies identified groundwater uptake during dry seasons in

these ecosystems [Lubczynski, 2006; Lewis and Burgy, 1964]. The specification of bottom

boundary condition should be considered jointly with the way to distribute total potential

transpiration to different water sources.

One key to understanding the water dynamics in water-limited is to monitor water use

continuously in soil and in plants across different scales. The availability of such data not

only helps to understand the mechanisms, but also provides valuable source for developing

models and validating them. One primary goal of this study is to present a suite of such wa-

ter dynamics data, including sap flow, soil moisture, and other auxiliary data, collected over

the growing season of 2007 on a single tree in a Californian oak-savanna ecosystem. The

concurrent measurements of tree transpiration, root zone soil moisture, and meteorological

forcings are used to identify the the functional relations between the tree transpiration and

environmental stresses, and to estimate the model parameters using statistical tools. The
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comparison of change in soil water volume and tree transpiration amount provides insights

to the contribution of soil moisture to tree transpiration over the growing season.

5.2 Materials and Methods

5.2.1 Data acquisition

The specific measurements on an individual tree include multiple soil moisture probes

to monitor soil moisture profile vertically and laterally, soil temperature probes for the pur-

pose of energy balance and soil respiration calculations, and sap flow sensors at different

tree heights for measuring tree transpiration. A schematic representation of the experimen-

tal setup is given in Figure 5.1. The soil moisture in root zone is monitored at depths of

5cm, 20cm and 50cm, respectively, and it is monitored at a depth of 20cm along the dripline

and in the open space. Soil temperature is measured at depths of 5cm and 20cm in both the

root zone and the open space.

Sap flow probe sets were manufactured following the instructions given in Burgess

et al. [2001]. We built thermocouple junctions using 36-G copper-constantan wires. They

were put inside micro-capillary tubes filled with silicone heat transfer compound and then

inserted into capped steel hypodermic needles. Each temperature probe consists of two

thermocouple junctions 1.5 cm apart to allow for temperature readings at two radial depths

(1.0 and 2.5 cm) into the sapwood. The same type of temperature probes were also used

to measure the soil temperature in the root zone and in the open space. The heater probes
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Figure 5.1: Schematic of measurement equipments installed around each experimental tree
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were built with coiled 36-G nichrome wire and they were also put inside steel hypodermic

needles. All the needle lengths were 3 cm, and the needle hubs for both the thermocouple

and heater needle bases were sealed with waterproof epoxy resin.

When installing the sap flow sensors, the outer barks were stripped to ensure xylem

contact and a steel drill guide was used to control the distance between probes. The sap

flow sensors were installed on the north side of the tree and were insulated with aluminum

foil to minimize the influence of diurnal bole temperature fluctuation.

Soil moisture at the site has been monitored using ECH2O EC-5 sensors (Decagon

Devices, Inc., Pullman, WA). The sensor measures the dielectric constant of the medium

surrounding the probe and outputs a single voltage value, which can be directly related to

volumetric soil water content. All the probes were calibrated in our laboratory using soil

samples taken from the experimental site. After the samples were dried in oven, they were

put into containers with known volume, then different amount of water was added to each

container to obtain a range of volumetric soil water contents in field. The soil samples

were equilibrated before measurements were taken. For each probe, voltage readings at

each soil water content were recorded and a regression analysis were conducted to relate

voltage readings and real volumetric soil water content. The calibration curves for the five

sensors involved in this study is shown in Figure 5.2, which show linear relationships.

All the sensors were connected to an AM16/32 multiplexer attached to a CR10X data

logger (Campbell Scientific Inc., Logan, UT). Data were logged every 30 minutes. A

temperature thermistor was attached to the multiplexer for a reference temperature. The
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heat pulse was controlled by a relay manufactured at our lab. The program used to collect

all the data is attached in Appendix C.

In addition to the continuous measurements taken on the individual tree, predawn(around

5am) and midday(around 2pm) leaf water potentials were measured on two trees on the site

in the growing seasons of 2007 and 2008. The measurements were taken every one or two

weeks after the last precipitation event in the spring until the trees were dormant. Meteoro-

logical measurements (e.g., solar radiation, air temperature, wind speed, precipitation, etc)

are available from the overstory eddy covariance tower. The net radiation intercepted by

the tree canopy is estimated from the difference between net radiations measured above the

tree canopy (by sensors installed on the eddy covariance tower) and under the tree canopy

(by sensors installed on a 20-m-long railtrack under tree canopies).

The data of water retention characteristics came from three sources. One of them

was estimated from soil texture and bulk density using pedotransfer functions in Rosetta

database (USDA, 1999), which adopts van Genuchten model [van Genuchten, 1980]. A

range of water retention curves was obtained from soil texture and bulk density of 49 sam-

ples collected over a 200 m × 200 m area. Another one was from samples analyzed at

the Division of Agriculture and Natural Resources (DANR) Analytical Soils Laboratory,

University of California-Davis. The other set of data was obtained by Liukang Xu in 2002,

using a WP4 Dewpoint PotentiaMeter (Decagon Devices, Inc., Pullman, WA), which mea-

sures water potential of the sample by relating it to the vapor pressure of air in equilibrium

with the sample.
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5.2.2 Tree transpiration model under water stress

The whole-plant transpiration can be modeled using the following Penman-Monteith

equation [Monteith and Unsworth, 1990] that assumes the tree canopy as a big leaf,

λE =
s(Rn−G)+ρaCpGaV PD

s+ γ(1+Ga/Gc)
(5.1)

where λ is the latent heat of vaporization of water, E is transpiration flux, s is the derivative

of the saturated vapor pressure against temperature, Rn is the net radiation intercepted by

tree canopy, G is the ground heat flux density, ρa is the air density, Cp is the specific heat

of air at constant pressure, V PD is the vapor pressure deficit at air temperature, γ is the

psychrometric constant, Ga is the bulk aerodynamic conductance for heat and water vapor

transfer through the surface layer, and Gc is the bulk canopy conductance for water vapor

transfer. Ga can be approximated using friction velocity and wind speed at a reference

height, i.e.,

Ga =
u2∗(z)
u(z)

(5.2)

where u(z) and u∗(z) are wind speed and friction velocity at reference height z, respectively.

The bulk canopy conductance (Gc) is generally assumed to be affected by the same

factors that control stomatal behavior of a single leaf [Lhomme, 2001]. While the mecha-

nistic modeling of stomatal functioning is extremely difficult, empirical models are often

adopted to relate stomatal conductance to environmental or physiological factors. One of

the most widely used approaches is the Jarvis-type [Jarvis, 1976; Jarvis and McNaughton,

1986; Jones, 1992], which uses a multiplicative form to describe the response of stomata
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to environmental factors

Gc = Gcmax f1(V PD) · f2(Ta) · f3(Rg) · f4(θ) · · · (5.3)

where Gcmax represents the maximum canopy conductance when none of the controlling

factors is limiting. Although the selection of controlling factors may vary among sites,

the most extensive collection may be incoming solar radiation (Rg), vapor pressure deficit

(V PD), air temperature (Ta), CO2 concentration and soil water status (volumetric soil water

content θ , soil water potential or leaf water potential) [Lhomme, 2001]. The forms of

controlling functions can be obtained from controlled environmental experiments [Jones,

1992], and some examples of typical functions are available in Jones [1992] and Lhomme

[2001].

The empirical form as shown in 5.3 is not accepted as a priori in this study. Rather,

a statistical approach, alternating conditional expectation (ACE) algorithm [Breiman and

Friedman, 1985], is adopted to identify the optimal functional dependence of bulk canopy

conductance on the environmental factors. ACE identifies the optimal transformation of

both dependent and independent variables in multiple regression by maximizing the linear

correlation between the transformed dependent and independent variables. The ACE algo-

rithm was first adopted in identifying stress functions at a stand level using eddy covariance

measurements by Kiang [2002]. Its primary advantage is that it is totally data-driven and

does not assume parametric functional forms. More details on this method are available

in Appendix E. ACE algorithm enables us to investigate whether a multiplicative form

of stress functions as suggested in 5.3 applies to the tree on which data were collected,
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and the functional forms can be determined from the transformed variables. Furthermore,

ACE identifies if a variable is statistically significant in the regression after transformation,

which enables us to decide whether to include a variable in the regression equation.

Once the transformations of the variables are determined, the parameters involved can

be estimated through Bayesian inversion technique with MCMC sampling method, as de-

scribed in Chapter 2 and Chapter 4. This framework was again implemented in the WIN-

BUGS software [Lunn et al., 2000]. More details on the Bayesian inference and MCMC

sampling can be found in the Appendix A. Multiple chains of the parameters were simu-

lated in parallel and the modified Gelman-Rubin convergence diagnostic statistics [Brooks

and Gelman, 1998] were used to test the effective convergence of the samples. Each chain

had a sample size of 60,000 parameter sets with the first 50,000 realizations discarded to

obtain a stationary distribution. One sample out of every twenty was selected to assure

the independence among samples. The resulting pool of samples was used to derive the

joint posterior distribution of the parameters, as well as the marginal distribution of each

parameter.

5.3 Results and Discussions

5.3.1 Meteorological and water status observations

The continuous measurements on the tree started in March of 2007. Soil moisture

data collected since then are presented in Figure 5.3 along with leaf water potential, air
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temperature, and precipitation observations in 2007 and 2008. Soil moisture data and air

temperature data are averaged values during daytime (8am-6pm). These two years are

relatively dry years with below-average precipitation: 403 mm for 2007 and 257 mm for

the first 10 months of 2008. Major rainfall events stopped early in 2008 (day 50 compared

to day 100-150 in a normal year). The seasonal pattern of air temperature is representative

for other meteorological variables, such as solar radiation and vapor pressure deficit. In

general, the summer is characterized by high solar radiation, high temperature, and high

vapor pressure deficit with essentially no precipitation.The results from two typical days

with full leaf foliage during the growing season of 2007 yield an estimation of 50% of net

radiation intercepted by the tree canopy during the course of day, and this value is used

through the growing season.

The dynamics of soil moisture in wet seasons are mainly controlled by the rainfall

events. The magnitude of soil moisture pulse responding to rainfall is damped with depth

as expected. Soil moisture at all depths started to decline rapidly right after the rainfall

stopped, followed by a slowdown of depletion, which may indicate the onset of soil water

stress. In contrast, the decrease in leaf water potential seems to accelerate in summer. This

can be explained by the high non-linearity of soil water retention characteristics when soil

is getting progressively drier, as shown in Figure 5.4. It is found in 2007 that the soil is

wetter in deeper root zone or in places further away from the center of the tree. However,

in the summer of 2008, the soil moisture at 50 cm in the root zone is significantly drier than

it was in 2007, which might imply change in root water uptake strategy in dry years.
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Figure 5.3: Meteorological and water status observations in 2007 and 2008. Soil moisture
data and air temperature data are averaged values during daytime (8am-6pm). Predawn leaf
water potential (LWP) were averaged from measurements taken at two other trees within
the footprint of the overstory eddy covariance tower.
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5.3.2 Sap flow observations

The heat pulse velocities were calculated from the ratio of temperature increases fol-

lowing the procedures outlined in the previous chapter, with parameters calibrated using

heat response curves collected on this specific tree. The data points fluctuate beyond three

standard deviations from daily mean were regarded random spikes and were removed from

the time series. A snapshot of heat pulse velocities between day 150 and day 160 of 2007

from the bottom set of probes is given in Figure 5.5. The results show that uncertainty in

estimated heat pulse velocities increases with velocity magnitude, and the velocities mea-

sured at outer section are higher than those measured deeper into the trunk. The data also

show non-zero transpiration at night-time, which was also found in another independent

study at the site [Fisher et al., 2007].

The heat pulse velocities were corrected for wounding effect with a linear factor adopted

from Burgess et al. [2001]. The corrected heat pulse velocities were then converted to sap

flux density following Marshall [1958] and Burgess et al. [2001]. The conversion factor is

dependent on wood moisture content, which is assumed to vary from 0.5 in wet season to

0.25 in dry season. A detailed description of wood moisture relations of sap flux calculation

is given in Appendix D.

Sapwood area is an essential parameter to calculate sap fluxes from the sap flux density.

A power-law equation is fitted on sapwood area and tree diameter based on data collected

from fresh tree samples cut down by the ranch owner occasionally. The boundary between

sapwood and heartwood was identified from the change of color. The data and the regres-
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Figure 5.5: Heat pulse velocities measured from the bottom set of sap flow sensors. Inside
and outside probe pairs are 2.5 cm and 1 cm into the tree sapwood, respectively. The
scatters are mean values calculated from MCMC samples and dashed lines are plus minus
two standard deviations from the mean value.
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sion equation are given in Figure 5.6.

The half-hour sap fluxes were added up during day-time (8am to 6pm) as the daily

amount. The night-time transpiration was removed from the study because the mechanism

of night-time transpiration is different from that controls day-time transpiration, and P-M

equation is not suitable for the conditions with low available energy. Figure 5.7 shows

the daily transpiration on leaf area basis in the growing season of 2007. An increasing

trend in the early growing season and declining trend in the summer is clearly observed

from the data. The transpiration data also responds well to the leaf-out date, around day
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Figure 5.7: Daily transpiration measured from bottom set of sap flow sensors. The scat-
ters are mean values calculated from MCMC samples and dashed lines are two standard
deviations from the mean value.

83, in 2007. The total mean transpiration from day 80 to day 250 adds up to 250mm.

The uncertainty range is two standard deviations below or above the mean value. The sap

flow measurements on the same tree seem problematic in 2008, which may be due to the

growing wound effect to the tree. Therefore, these data in 2008 are not used in this study.
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5.3.3 Water balance calculation

The total transpiration amount during day-time is compared to the total change in soil

water volume on daily and weekly basis in Figure 5.8 and Figure 5.9, respectively. The

negative change in soil water volume indicates infiltration during rainfall events. It is ob-

served that after large rainfall events, the depletion in soil water is more than the amount of

transpiration, which may be a result of water leakage to the deeper soils and loss through

soil evaporation. However, tree transpires much more water than the depletion of soil water

during the dry season, which is a strong evidence of tree tapping water from deeper soil

and groundwater. This factor must be appropriately accounted for in future soil moisture

dynamics modeling work.

5.3.4 Parameter estimation results for bulk canopy conductance

The data used in this study were those collected in water-stressed period (normally

includes late spring and entire summer) since the goal is to investigate the effects of soil

water stress. Root-density weighted soil moisture was calculated from the vertical profile

of soil moisture in the root zone using Eq. (2.5). The soil moisture at the depth of 20 cm

was averaged from the two measurements at the same depth in root zone and at the dripline.

The exponential model for cumulative distribution of root biomass [Jackson et al., 1996]

was again adopted, P(z)=1-βz, with z being the depth in centimeters and β value is chosen

to be 0.976 for the oak trees. Bulk canopy conductances were inverted from the P-M

equation, and ACE transformation were conducted on the inverted Gc on net radiation,
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air temperature, vapor pressure deficit and soil moisture, using free statistical software R

(http://cran.r-project.org/). Effect of CO2 concentration was omitted since the fluctuation

of CO2 concentration within a year or two may not cause significant change in stomatal

functioning. The ACE algorithm identified significant variables to be net radiation, vapor

pressure deficit, and soil moisture. The air temperature is not significant mostly because it

is closely related to vapor pressure deficit and therefore its effect can be represented by the

vapor pressure deficit.

After trying both original and log-transformed variables in ACE procedure, the one

with log-transformed Gc and VPD resulted in the highest correlation (R2 =0.99) between

transformed dependent variable and transformed independent variables. The optimal trans-

formations in this case are shown in Figure 5.10. It can be observed that no further trans-

formation is needed for Gc and VPD, and a piece-wise linear transformation works well

for the net radiation. As for the soil moisture, the optimal transformation appears to be

non-linear. However, a piece-wise linear function can work well for it since identifying

the non-linear form is not easy and it may not perform better than the piece-wise linear

relation. Therefore, a piece-wise linear function is adopted for the transformations of both

net radiation and soil moisture.

The high R2 value indicates a strong linear relationship between the transformed Gc

and transformed VPD, Rn, and SWC. It is also evident in the plot of transformed log(GC)

on summation of transformed log(VPD), SWC, and Rn. These results imply that a multi-

plicative form of stress functions on bulk canopy conductance is applicable at the tree level,
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although it is found not appropriate at the stand level [Kiang, 2002].

In summary, the following equation can be applied to describe the dependence of Gc on

VPD, SWC and Rn,

log(Gc) = b0 + kV PD log(V PD)+ kθ (θ∗−θ)+ kR (R∗n−Rn) . (5.4)

The parameters in Eq. 5.4 are statistically inverted conditioned on day-time tree tran-

spiration measurements deduced from sap flow method, soil moisture measurements, and
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meteorological measurements. The prior distributions assigned to the parameters are

b0 ∼ uniform(0, 2.2)

kV PD ∼ uniform(-1, −0.3)

θ∗ ∼ uniform(0.12, 0.15)

kθ ∼ uniform(2, 100)

R∗n ∼ uniform(15, 18)

kR ∼ uniform(-0.06, −0.005) (5.5)

where the unit of Gcmax is mm/s and the unit of VPD is kPa. The posterior marginal

distributions of the parameters are given in Figure 5.12. Compared to their uniform prior

distributions, the posterior distributions are bounded by much narrower ranges with well-

defined peak densities, which implies a reduction in uncertainty and the parameters were

successfully inferred with the Bayesian framework.

The mean values of fitted transpiration and fitted bulk canopy conductance based on

the parameters estimated from the MCMC method are compared to the mean values of

observed transpiration and inverted bulk canopy conductance in Figure 5.13. The scatters

are observed to distribute closely around the 1:1 line, which indicate good model fitting.

Further diagnosis plots in Figure 5.14 show that residuals, which are defined as the differ-

ence between the fitted values and observed values, appear to be independent on SWC, net

radiation, VPD and air temperature. This suggests a good fitting to the model and there is

no other significant factors left out.
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Figure 5.14: Diagnosis plots of residuals versus dependent variables.
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With Eq.5.4, the potential tree transpiration can be calculated by setting soil moisture

to be θ∗ in Eq. 5.4 and then substitute the Gc values into the P-M equation. The potential

transpiration calculated for the growing season of 2007 is given in Figure 5.15 for illustra-

tion. It is clearly shown in the plot that soil moisture controls the actual tree transpiration

in the summer time. This calculated potential transpiration can be incorporated in further

soil water dynamics modeling.
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5.4 Conclusions

Understanding water dynamics under water stress is important for water resources man-

agement in the arid and semi-arid areas. We discussed in this study how plant adjusts tran-

spiration under the stressed conditions, using continuous transpiration and soil moisture

data collected at the plant scale in a Californian oak-savanna. The primary goal of this

study was to connect the soil water dynamics modeling work in hydrological studies to

meteorological studies on tree transpiration responding to environmental stresses including

water stress.

The influence of soil and atmospheric water stresses on plant-scale transpiration was

investigated through inverting bulk canopy conductance from the Penman-Monteith equa-

tion. The functional dependence of bulk canopy conductance on environmental stresses was

identified using the ACE algorithm, which is a non-parametric data-driven statistical tool.

A multiplicative form of stress functions on tree transpiration is suggested by the data. The

parameters involved in the stress functions were inferred using a Bayesian framework with

the MCMC sampling method. The calibrated model can then be used to estimate the po-

tential transpiration of a tree, which can be incorporated into future soil dynamics models.

The advantages of this procedure are that it accounts for the effects of other environmental

stresses, such as vapor pressure deficit and net radiation, on the calculation of potential

transpiration, and the parameters inferred using MCMC enables further quantification of

uncertainties involved in the calculated potential transpiration.

A water budget calculation at the plant scale was conducted by comparing the tree



111

transpiration amount with the change in soil water volume in the root zone. It is found

that most water transpired in summer comes from deeper soil or groundwater. This is a

strong evidence showing the groundwater dependence of the semi-arid ecosystem, and it is

an important fact to be considered in further soil water dynamics modeling by specifying

appropriate bottom boundary conditions in dry seasons.

This study can improve further root-zone soil dynamics modeling in semi-arid ecosys-

tems by providing a prototype to include environmental stresses in mechanistic calculation

of potential tree transpiration rate and by showing evidence of tree tapping water from the

deeper soil and groundwater in dry season. Although this study only included data from a

single tree, the fundamental methodology can be applied to data collected on other single

trees and at larger scales. It is also useful for upscaling tree transpiration and soil water

dynamics to larger scales.
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Chapter 6

Summary

The purpose of this dissertation work was to improve the conceptual understanding and

mathematical modeling of water transport in the soil-plant-atmospheric continuum under

drought conditions, from a plant scale to a stand scale. The particular focus was on inves-

tigating the regulation of soil moisture on plant water use at both scales, for which models

of water stress function were examined and calibrated using water exchange data acquired

in a Californian oak-savanna ecosystem.

With the recognition that successful model development and calibration relies on field

data, part of the dissertation work was to acquire water use data at plant scale, in addition

to on-going data acquisition efforts at the study site, which included water fluxes and me-

teorological variables measured by the eddy covariance tower and soil moisture measured

within the tower footprint. Root zone soil moisture at the plant scale was monitored at

various depths and tree transpiration was monitored using sap flow measurements. The
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availability of such continuous data sets an example for acquiring water use data at con-

sistent scales and enables the study on how water dynamics at a plant scale respond to

water stress. Furthermore, a network of such measurements on representative trees within

the ecosystem provides valuable information on upscaling water fluxes in heterogeneous

environment.

The amount of transpiration by individual trees were monitored by installing sap flow

sensors in the tree trunks. The sapflow velocity was inferred from the ratio of temperature

changes measured downstream and upstream of a heating element following the release of

a heat pulse. The theoretical basis of sap flow measurements using the heat ratio method

was reevaluated in this dissertation. An improved solution to the heat transport process

in sapwood was derived by replacing idealized assumptions in Marshall’s classic solution

with more realistic ones. More specifically, the sapwood was considered bounded porous

medium, the line source had finite length, which may or may not extend through the entire

sapwood depth, and the heat was released from the line source over a duration. Extensive

comparisons on the difference of calculated temperature fields by Marshall’s solution and

the improved solution revealed that most significant discrepancy occurs around the early

times, whereas the difference is negligible at later times. It is therefore recommended that,

when employing the heat ratio method, the temperature increases should be measured in

late time windows.

Numerical experiments based on the improved analytical solution to the heat transport

process in sapwood discovered that the original fundamental equation of the heat ratio
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method may result in a significant bias in estimated heat pulse velocity, if the temperature

probes are not installed symmetrically around the heating element. Nevertheless, simple

modifications to the intercept and slope of original fundamental equation can account for

the departure of field experimental setup from the ideal setup. Such modification can also

be accurately determined by the probe geometry. This revised equation was adopted in this

dissertation to calculate sapflow velocities.

The successful application of heat ratio method depends on obtaining reliable estima-

tion of sapwood thermal diffusivity and probe geometry. To assure the quality of the sap

flow measurements acquired from the experimental site, this dissertation study also pro-

vided a systematic, non-destructive, and replicable methodology to determine wood ther-

mal diffusivity and probe geometry for the sap flow measurements using the heat ratio

apparatus. The estimation of these parameters was conditioned on the time series of tem-

perature increases, i.e., temperature response curves, monitored by the downstream and

upstream temperature probes after a heat pulse was released by the central heating probe.

The primary advantage of the methodology is that it relies on the information that can

be obtained using the installed probes without any further disturbance to the tree. It can

also be used to obtain seasonality of wood thermal properties by conducting heat response

experiments over different seasons. The proposed methodology is ready to be applied to

calibrate existing heat ratio sap flow systems at other sites. It is highly recommended that

any study involving sap flow measurements take temperature response curves routinely to

improve the data accuracy. It is especially useful when alternative transpiration calibration
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devices such as lysimeters are not available.

It was discussed in this dissertation how soil moisture controls actual evapotranspiration

at the stand scale using multi-year field observations at the daily time step. The influence

of soil moisture on actual ET was investigated through the dependence of the ratio between

ET, as measured by the eddy covariance towers, and the potential ET, as approximated by

the Priestley-Taylor equation, on the representative soil moisture. The Feddes Model was

found to be in agreement with the observed patterns of soil moisture effects on ET regard-

less of whether the heterogeneous environment of trees and grasses was homogenized or

treated as the sum of its individual components. However, the parameters of the Feddes

Model varied with time. Grasses have lower θ∗2 and higher θ∗1 during wetter years, whereas

trees have the opposite trend, i.e., they start to control ET under moister soil (higher θ∗2)

during wetter years so that their ET persists into drier soil conditions (i.e., lower θ∗1). This

inter-annual variability is primarily driven by variations in the seasonal precipitation dis-

tribution pattern from year to year, as well as the responses of various plant functional

types to changes in soil water availability. Grasses tend to rapidly use up the available wa-

ter resources during the wetter years because they have little control over the evaporation,

whereas trees are able to control water loss by limiting the xylem hydraulic conductance

and by controlling their stomata. This difference in responses can also be a result of change

in fine root distributions due to water availability in early seasons.

The selection of representative soil moisture led to considerable difference in the inter-

annual variability of model parameters. Among the various averaging schemes tried in
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this study, including (1) the arithmetic average of soil moisture measurements at different

depths obtained at one location, (2) the arithmetic average of the spatially distributed soil

moisture measurements at different depths and (3) the root density weighted average of the

distributed soil moisture measurements at different depths, the last scheme yielded the most

consistent behavior of the Feddes Model over time. The study demonstrated that distributed

sampling of soil moisture is necessary to study the effects of soil moisture availability

on ET in open canopy ecosystems. Furthermore, the soil water availability at different

depths has a different influence on the total ET depending on the fraction of root biomass

present at the corresponding depths. This difference can be accounted for by using the root

density weighted average of the vertical soil moisture profile to produce representative soil

moisture.

The influence of soil and atmospheric water stresses on plant-scale transpiration was

investigated through inverting bulk canopy conductance from Penman-Monteith equation.

The functional dependence of bulk canopy conductance on environmental stresses was

identified using a non-parametric data-driven statistical tool, ACE method. A multiplicative

form of stress functions of tree transpiration was suggested by the data. This form can be

used to separate soil water stress from other environmental stresses so that the potential tree

transpiration can be appropriately calculated. A water budget calculation at the plant scale

found that most water transpired in summer comes from deeper soil or groundwater. This is

a strong evidence showing the groundwater dependence of the semi-arid ecosystem, and it

is an important fact to be considered in further soil water dynamics modeling by specifying
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appropriate boundary conditions in dry seasons. This part of study demonstrated the im-

portance to connect water dynamics studies in both hydrology and meteorology societies.

Although both communities are interested in water transport from soil to the atmosphere

through plant regulation, hydrology community mostly focuses on the root zone soil water

dynamics under drought conditions, whereas the meteorology community is more focused

on studying the mechanisms of plants adapting to changing climate. It is beneficial to look

into the efforts in both sides in order to better understand and model the water transport

process along the soil-plant-atmospheric continuum under drought conditions.

This dissertation also demonstrated the strength of Bayesian inverse modeling tech-

nique in dealing with uncertainties arising from various sources in model calibration. This

parameter estimation methodology provided a systematic tool to quantify the parameter un-

certainties conditioned on field observations. Adopting MCMC sampling scheme enables

direct assessment of uncertainties in predictions that use the parameters or any functions

of the parameters. The improved ability in model calibration along with the availability

of new observations can improve our understanding of the complex mechanisms related to

water dynamics under drought conditions and thus enables newer model development in

water-controlled ecosystems.
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Appendix A

Parameter estimation for the Feddes

Model

A.1 Parameter Estimation Method

The basis of our parameter estimation approach is the Bayes’ Theorem given by:

fM|D (m|d∗) =
fD|M (d∗|m) fM (m)

fD (d∗)
=

fD|M (d∗|m) fM (m)∫
m

fD|M (d∗|m) fM (m)dpm
(A.1)

where the boldfaced fonts represent vectors, upper-case letters represent random variables,

and lower-case ones represent realizations of random variables. M is a vector of unknown

parameters with dimension p and d∗ is a vector or matrix of observed data. fM (m) denotes

the prior probability density function (pdf) of M, which reflects our knowledge of model
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parameters before observing d∗, fD|M (d∗|m) is the likelihood of observing d∗ given model

parameters, and fM|D (m|d∗) is the posterior pdf of M after the observations are taken

into account. The major advantage of Bayesian parameter estimation is that it enables us

to incorporate the prior knowledge about the model parameters into the learning process

through the prior distributions.

Specifically, the parameters involved in this study are m = {β,θ∗1,θ
∗
2}. The observations

are R = {Ri (θi)} with the subscript i being the i-th observation. The representative soil

moisture values are taken as observed inputs.

A.1.1 Principle of Minimum Relative Entropy

The selection of prior distributions is critical in the Bayesian approach [Scales and

Snieder, 1997] because the posterior distribution is dependent on the prior distribution

as evident in Eq. (A.1). Instead of choosing arbitrary prior distributions, we adopted a

systematic approach based on the principle of Minimum Relative Entropy (MRE) [Hou

and Rubin, 2005; Rubin, 2003; Woodbury and Rubin, 2000; Woodbury and Ulrych, 1993],

which states that of all the probabilities that satisfy the given constraints, such as average or

higher-order moments, choose the one that has the highest entropy with respect to a known

prior. Since entropy represents the amount of uncertainty associated with a probability

distribution, the principle of MRE favors distribution that is the most uncommitted or the

least subjective with respect to the constraints.

Assume f 0
M (m) is an initial estimate of the prior distribution fM (m), the principle of
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MRE obtains the optimal estimation of fM (m) by minimizing its negative entropy with

respect to the initial estimate subject to known constraints. Its mathematical form is

min
∫

m

fM (m) ln
(

fM (m)
f 0
M (m)

)
dpm (A.2)

The optimal solution, f ∗M (m), has to satisfy the following constraints,

∫

m

f ∗M (m)ri (m)dpm = r̄i, f ori = 1, · · · ,N (A.3)

∫

m

f ∗M (m)dpm = 1 (A.4)

where ri is some known functional forms, such as the moments of the data, with r̄i being

the corresponding prior knowledge, and N is the number of constraints in addition to Eq.

(A.4).

For the parameters engaged in the Feddes Model, only their physical bounds are known

as a priori. Their prior distributions are therefore assigned as uniform between the lower

and upper bounds.

A.1.2 Markov Chain Monte Carlo Method

Given the likelihood of data and the prior distributions of the parameters, the inference

of the posterior distribution based on Eq. (A1) is often not tractable, mainly due to the
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multidimensional integration in the denominator. Sampling or Monte Carlo method has

been extensively used for exploring posterior distribution, one of which is the well-known

importance sampling. However, importance sampling [Geweke, 1989] is of limited use

in high-dimension case because it requires an importance sampling density that has a tail

at least as heavy as the target distribution [Tierney and Mira, 1999]. Markov chain Monte

Carlo (MCMC) method provides an effective alternative sampling strategy in a wide variety

of problems [Gelfand and Smith, 1990; Tierney and Mira, 1999; Andrieu et al., 2003; Smith

and Roberts, 1993], and it has become a widespread tool for Bayesian inference.

The underlying rationale of the MCMC method is to construct a Markov chain in the

parameter space that converges to a stationary distribution, which is the desired posterior

distribution. The chain is constructed such that the next state is only dependent on the

current state according to a transitional probability. There are two general algorithms for the

MCMC method, Metropolis-Hastings algorithm based on the idea of proposal and rejection

[Metropolis et al., 1953; Hastings, 1970] and Gibbs sampler [Gemand and Gemand, 1984;

Gelfand and Smith, 1990] by breaking the joint distribution into a series of conditional

probabilities that are easier to sample. We adopted the latter algorithm because the full

conditional probabilities can be specified for sampling. The samples generated from the

joint posterior distribution allow direct assessment of uncertainty in predictions, using the

parameters or any functions of the parameters.
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A.1.3 Inference Using WinBUGS

In this study, the MCMC method was implemented using the software package Win-

BUGS [Lunn et al., 2000]. The statistical inference using WinBUGS is based on prior

distributions and a series of conditional probabilities as shown in the following:

Ri|αi,β∼ lognormal(αiβ,σR)

αi|θi,θ∗1,θ
∗
2 = max

(
1,min

(
0,

θi−θ∗1
θ∗2−θ∗1

))

θi|θobs,i,σθ ∼ normal
(

θobs,i, σθ

)

θ∗1|θ∗2 ∼ uniform(0, θ∗2)

θ∗2 ∼ uniform(0, 0.5)

β∼ uniform(0.1, 2.0)

log(σR)∼ uniform(-5.0, 2.0)

log(σθ)∼ uniform(−7.0, −1.0) , (A.5)

where Ri is assumed to be lognormally-distributed for its non-negative restriction, with

mean αiβ and standard deviation σR. The uncertainty of Ri arises from the measurement

errors in the variables involved in the calculation as well as the model uncertainty to esti-

mate the potential ET. Representative soil moisture is modeled as a random variable for its

errors in measurements, interpolation, and aggregation from point measurements to a rep-

resentative value at the stand scale. The standard deviations of both Ri and θi are assigned
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as hyper-parameters that are parameters of unknown parameters. The connection between

θ∗1 and θ∗2 is due to the constraint that θ∗1 cannot exceed θ∗2.

The uniform prior distributions, f (θ2), f (θ1 |θ2 ), f (β), f (σθ) and f (σR) were se-

lected based on the principle of MRE and their product constitutes the combined prior of

model parameters and hyper-parameters. It is assumed in the inference that Ri’s are inde-

pendent given αi and β, the likelihood is therefore fD|M (d∗|m)≡ f (R|θ,θ∗1,θ
∗
2,β,σR,σθ)=

N
∏
i=1

LN (αiβ,σR).
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Appendix B

Regression Relations used to Extend

TDR Measurements in 2003-2005 at

Tonzi Site
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Figure B.1: Regression of average TDR measurements on the Theta probe measurements
in 2003. Theta probe measurements are daily averages calculated from continuous data on
half-hour basis. TDR measurements are averages calculated from all TDRs located in the
site. The regression equations are shown along with the regression lines.
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Figure B.2: Regression of TDR measurements under tree canopies on the Theta probe
measurements in 2003. Theta probe measurements are daily averages calculated from con-
tinuous data on half-hour basis. TDR measurements are averages calculated from TDRs
located under tree canopies. The regression equations are shown along with the regression
lines.
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Figure B.3: Regression of TDR measurements in open spaces on the Theta probe measure-
ments in 2003. Theta probe measurements are daily averages calculated from continuous
data on half-hour basis. TDR measurements are averages calculated from TDRs located in
the open spaces (not covered by tree canopy). The regression equations are shown along
with the regression lines.
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Figure B.4: Regression of average TDR measurements on the Theta probe measurements
in 2004. Theta probe measurements are daily averages calculated from continuous data on
half-hour basis. TDR measurements are averages calculated from all TDRs located in the
site. The regression equations are shown along with the regression lines.
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Figure B.5: Regression of TDR measurements under tree canopies on the Theta probe
measurements in 2004. Theta probe measurements are daily averages calculated from con-
tinuous data on half-hour basis. TDR measurements are averages calculated from TDRs
located under tree canopies. The regression equations are shown along with the regression
lines.
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Figure B.6: Regression of TDR measurements in open spaces on the Theta probe measure-
ments in 2004. Theta probe measurements are daily averages calculated from continuous
data on half-hour basis. TDR measurements are averages calculated from TDRs located in
the open spaces (not covered by tree canopy). The regression equations are shown along
with the regression lines.
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Figure B.7: Regression of average TDR measurements on the Theta probe measurements
in 2005. Theta probe measurements are daily averages calculated from continuous data on
half-hour basis. TDR measurements are averages calculated from all TDRs located in the
site. The regression equations are shown along with the regression lines.
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Figure B.8: Regression of TDR measurements in open spaces on the Theta probe measure-
ments in 2005. Theta probe measurements are daily averages calculated from continuous
data on half-hour basis. TDR measurements are averages calculated from TDRs located in
the open spaces (not covered by tree canopy). The regression equations are shown along
with the regression lines.
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Appendix C

Data Logger Program for Data

Collection

;{CR10X}

; data logger program modified from Josh Fisher’s code

; for Cluster 1

;AM16/32 is running in 2*32 mode

; Take the measurements every half an hour

*Table 1 Program

01: 1800 Execution Interval (seconds)

; Check the battery voltage

1: Batt Voltage (P10)

1: 1 Loc [ Batt_Volt ]

; Check the circuit everyday

2: If time is (P92)

1: 0 Minutes (Seconds --) into a

2: 1440 Interval (same units as above)

3: 30 Then Do

3: Signature (P19)

1: 2 Loc [ Prog_Sig ]
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4: End (P95)

; Check the panel temp

6: Temp (107) (P11)

1: 1 Reps

2: 12 SE Channel

3: 3 Excite all reps w/E3

4: 3 Loc [ PTemp_C ]

5: 1.0 Mult

6: 0.0 Offset

; Turn on the multiplexor

7: Do (P86)

1: 41 Set Port 1 High

; Take initial temperatures from the thermocouples

; including sap flow sensors and soil temperature

8: Beginning of Loop (P87)

1: 0 Delay

2: 16 Loop Count

; Clock through the multiplexor

9: Do (P86)

1: 72 Pulse Port 2

; Delay to give enough responding time

10: Excitation with Delay (P22)

1: 1 Ex Channel

2: 0 Delay W/Ex (units = 0.01 sec)

3: 1 Delay After Ex (units = 0.01 sec)

4: 0 mV Excitation

; Each measurement is repeated 10 times

11: Beginning of Loop (P87)

1: 0 Delay

2: 10 Loop Count

12: Thermocouple Temp (DIFF) (P14)

1: 1 Reps

2: 1 2.5 mV Slow Range
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3: 1 DIFF Channel

4: 1 Type T (Copper-Constantan)

5: 3 Ref Temp (Deg. C) Loc [ PTemp_C ]

6: 65 -- Loc [ tempiT_1 ]

7: 1 Mult

8: 0 Offset

13: End (P95)

; Average 10 TC measurements!

14: Spatial Average (P51)

1: 10 Swath

2: 65 First Loc [ tempiT_1 ]

3: 44 -- Avg Loc [ ainitT_1 ]

15: End (P95)

; skip the empty channels

16: Beginning of Loop (P87)

1: 0 Delay

2: 4 Loop Count

17: Do (P86)

1: 72 Pulse Port 2

18: Excitation with Delay (P22)

1: 1 Ex Channel

2: 0 Delay W/Ex (units = 0.01 sec)

3: 1 Delay After Ex (units = 0.01 sec)

4: 0 mV Excitation

19: End (P95)

; take soil moisture measurements

20: Beginning of Loop (P87)

1: 0 Delay

2: 5 Loop Count

; clock the multiplexor!

21: Do (P86)

1: 72 Pulse Port 2

; Delay
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22: Excitation with Delay (P22)

1: 1 Ex Channel

2: 0 Delay W/Ex (units = 0.01 sec)

3: 1 Delay After Ex (units = 0.01 sec)

4: 0 mV Excitation

; Measure every EC-5 probe 10 times

23: Beginning of Loop (P87)

1: 0 Delay

2: 10 Loop Count

24: Ex-Del-Diff (P8)

1: 1 Reps

2: 5 2500 mV Slow Range

3: 1 DIFF Channel

4: 1 Excite all reps w/Exchan 1

5: 1 Delay (units 0.01 sec)

6: 2500 mV Excitation

7: 65 -- Loc [ tempiT_1 ]

8: 1.0 Mult

9: 0.0 Offset

25: End (P95)

; Average the 10 soil moisture measurements!

26: Spatial Average (P51)

1: 10 Swath

2: 65 First Loc [ tempiT_1 ]

3: 101 -- Avg Loc [ VWC_1 ]

27: End (P95)

; Turn off the multiplexor!

28: Do (P86)

1: 51 Set Port 1 Low

; Reset the HRdivisor to 0

5: Z=X*F (P37)

1: 77 X Loc [ HRdivisor ]

2: 0 F

3: 77 Z Loc [ HRdivisor ]
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;Turn on the heater and last for 6 seconds

29: Do (P86)

1: 43 Set Port 3 High

30: Excitation with Delay (P22)

1: 1 Ex Channel

2: 0 Delay W/Ex (units = 0.01 sec)

3: 600 Delay After Ex (units = 0.01 sec)

4: 0 mV Excitation

31: Do (P86)

1: 53 Set Port 3 Low

; Set a timer

32: Timer (P26)

1: 0000 Reset Timer

; Measure the temperatures between 60-100s following the heat pulse

33: Beginning of Loop (P87)

1: 0 Delay

2: 0 Loop Count

34: Timer (P26)

1: 76 Loc [ timer ]

; Start the loop when t>60s

35: IF (X<=>F) (P89)

1: 76 X Loc [ timer ]

2: 3 >=

3: 60 F

4: 30 Then Do

; Exit the loop at 100s following the heat pulse

36: IF (X<=>F) (P89)

1: 76 X Loc [ timer ]

2: 3 >=

3: 100 F

4: 31 Exit Loop if True

;Turn on the multiplexor

37: Do (P86)

1: 41 Set Port 1 High
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;Measure the temperatures from TCs with sap flow sensors

38: Beginning of Loop (P87)

1: 0 Delay

2: 8 Loop Count

39: Do (P86)

1: 72 Pulse Port 2

40: Excitation with Delay (P22)

1: 1 Ex Channel

2: 0 Delay W/Ex (units = 0.01 sec)

3: 1 Delay After Ex (units = 0.01 sec)

4: 0 mV Excitation

41: Thermocouple Temp (DIFF) (P14)

1: 1 Reps

2: 1 2.5 mV Slow Range

3: 1 DIFF Channel

4: 1 Type T (Copper-Constantan)

5: 3 Ref Temp Loc [ PTemp_C ]

6: 24 -- Loc [ postT_1 ]

7: 1.0 Mult

8: 0.0 Offset

42: End (P95)

; Record how many times temperatures are measured on each TC during 60-100s

43: Z=Z+1 (P32)

1: 77 Z Loc [ HRdivisor ]

44: End (P95)

; Turn off Multiplexor

45: Do (P86)

1: 51 Set Port 1 Low

46: End (P95)

; Output data

47: Do (P86)
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1: 10 Set Output Flag High (Flag 0)

48: Set Active Storage Area (P80)^30133

1: 1 Final Storage Area 1

2: 100 Array ID

; Time when outputting data

49: Real Time (P77)^26495

1: 1221 Year,Day,Hour/Minute,Seconds (midnight = 2400)

; Battery voltage

50: Average (P71)^15633

1: 1 Reps

2: 1 Loc [ Batt_Volt ]

; Panel Temp

51: Average (P71)^19815

1: 1 Reps

2: 3 Loc [ PTemp_C ]

; Average initial temperature

52: Average (P71)^24723

1: 16 Reps

2: 44 Loc [ ainitT_1 ]

; Average temperature following heat pulse

53: Average (P71)^7966

1: 8 Reps

2: 24 Loc [ postT_1 ]

; Soil moisture data

54: Sample (P70)

1: 5 Reps

2: 101 Loc [ VWC_1 ]

*Table 2 Program

01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program
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Appendix D

Sapwood Moisture Relations of Sap

Flow Measurements

The impact of sapwood moisture content on sap flow measurements are reflected by

its influence on thermal diffusivity of fresh wood matrix and the conversion factor from

heat pulse velocity to sap velocity. This investigation is based on the previous work by

Burgess et al. [2001] and Simpson and TenWolde [1999]. The citations are not repeated in

the discussion hereafter. Some definitions of concepts that are related to this discussion are

listed in Table D.1.

Maximum moisture content can be calculated from specific gravity as

Mmax =
1

Gb
− 1

1.54
(D.1)

where 1.54 is the specific gravity of wood cell walls. Typical values of Gb in oaks are

around 0.7. Therefore, the corresponding Mmax is around 0.78.
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Table D.1: Definitions of some concepts related to wood moisture content

Concepts Symbol Definition

green wood
wood in which cell walls are completely
saturated with water

specific gravity Gb
ovendry weight of wood/green volume of wood

Density of water

moisture content M weight of fresh wood - ovendry weight of wood
ovendry weight of wood

fiber saturation point
moisture content at which only the cell walls are
completely saturated while no water exists in cell
lumens

D.1 Moisture Dependence of Thermal Diffusivity

The thermal diffusivity is defined as the ratio of thermal diffusivity to the product of

specific heat capacity and density as the following:

κ =
Kgw

ρgwcgw
(D.2)

where Kgw, ρgw and cgw are thermal conductivity, density, and specific heat of green wood,

respectively. Therefore, the effect of wood moisture content on wood thermal diffusivity is

based on its effect on Kgw, ρgw and cgw. The properties of green wood and ovendry wood

are distinguished with subscripts gw and dw, respectively.

Density of green wood can be calculated as

ρgw = Gb(1+M) (D.3)

where the unit of ρgw is g/cm3 and the density of sap water is assumed same as that of pure

water.
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The heat capacity of green wood is the combination of the heat capacity of dry wood

and sap water. Heat capacity of dry wood is temperature-dependent as

cdw = 0.1031+0.003867T (D.4)

where T is wood temperature in kelvin.

For moisture content above fiber saturation point, heat capacity of green wood can be

calculated from

cgw =
cdw +Mcs

1+M
. (D.5)

Moreover, when the moisture content falls below the fiber saturation point, there is an

additional term to account for extra energy in the wood-water bond, and Eq.(D.5) becomes

cgw =
cdw +Mcs

1+M
+M(−6.191+0.0236T −1.33M). (D.6)

In Eqs.(D.5) and (D.6), heat capacity of sap is taken as 4.182 J/(g.oK).

Kgw is calculated from the following equations:

Kgw = KsMGb +Kdw(1−MGb) (D.7)

Kdw = 0.04182(21−20Fv) (D.8)

where Fv is the void fraction of wood defined as Fv = 1−Gb(0.6494 + M), and heat con-

ductivity of sap water is selected as Ks=0.5984 W/(m.oK).
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D.2 Moisture Dependence of Conversion from Heat Pulse

Velocity to Sap Flux Density

The conversion from heat pulse velocity to sap flux density is given as

Js =
ρgwcgw

ρscs
vh = Fvh. (D.9)

For moisture contents above the fiber saturation point, the conversion factor F can be

rewritten by substituting Eqs. (D.5) and (D.3) into ρgw and cgw, and the following equation

is resulted:

F =
Gb(cdw +Mcs)

cs
(D.10)

where the dependence of F on M is linear.

D.3 An Example

For the blue oaks at our experimental site, we assume that the wood moisture content

may vary between 0.6 to 0.25, then the dependence of thermal diffusivity of green wood

and conversion factor F on wood moisture content is provided in Figure D.1 for three

values of Gb : 0.6, 0.7 or 0.8. This example demonstrates that thermal diffusivity of green

wood increases with the specific gravity while it decreases with wood moisture content.

Furthermore, the dependence is nonlinear. On the other hand, the conversion factor from

heat pulse velocity to sap flux density linearly increases with both wood moisture content

and wood specific gravity.
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Appendix E

Alternating Conditional Expectation

Algorithm

The alternating conditional expectation (ACE) algorithm was introduced by Breiman

and Friedman [1985] to identify the optimal transformations of dependent and indepen-

dent variables in multiple regression that produce the maximum linear correlation between

the transformed dependent and independent variables. Such optimal transformations can

be derived by minimizing the unexplained variance of a linear relationship between the

transformed dependent variable and the sum of transformed independent variables.

Consider a given set of dependent variable Y and independent variables X1, ...,Xn, the

general form of regression equation in ACE algorithm is

φ0 (Y ) =
p

∑
i=1

φi (Xi)+ ε (E.1)
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where φ0 and φi represent transformations of the dependent and independent variables,

respectively, and p is the dimension of the independent variables. The ACE algorithm

starts with arbitrary transformations with zero mean and unit variance. The unexplained

variance by the regression is defined as

ε2 (φ0,φ1, ...,φp) = E

[
φ0 (Y )−

p

∑
i=1

φi (Xi)

]2

(E.2)

subject to the constraint E [φ0 (Y )] = 1. The minimization of ε2 with respect to φ0 (Y ) and

φi (Xi) is accomplished through a series of single-function minimizations, which result in

the following equations:

φi (Xi) = E

[
φ0 (Y )−∑

j 6=i
φ j

(
X j

) | Xi

]
(E.3)

φ0 (Y ) =
E

[
∑p

i=1 φi (Xi) | Y
]

‖ E
[
∑p

i=1 φi (Xi) | Y
] ‖ (E.4)

The equations E.3 and E.4 represent two fundamental steps involved in the ACE algo-

rithm: conditional expectations and iterative minimization, and therefore, the name alter-

nating conditional expectation. The optimal transformations are obtained after the mini-

mization operations, and the transformed dependent and independent variables are related

as follows:

φ∗0 (Y ) =
p

∑
i=1

φ∗i (Xi)+ ε∗ (E.5)
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where the minimum regression error, ε∗, is related to the maximum correlation coefficient,

ρ∗, by ε∗2 = 1−ρ∗2.

The optimal ACE transformations are derived on the basis of the given data and do

not require a priori assumptions of the functional forms of the dependent and independent

variables. The ACE algorithm can be used to identify the nonlinearity in the original data

and thus provides a powerful tool for exploratory data analysis.


