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1. Objective
Estimate a heterogeneous hydraulic
conductivity field (K field) at the IFRC site.
 Electromagnetic Borehole Flowmeter (EBF) data
 → Point-scale depth-discrete “relative” conductivity
values at 19 wells → 3D heterogeneous field

 It requires point-scale transmissivities (T) at the EBF
wells as relative-to-absolute-value ratios
→ Short-duration (~20 min) Constant-rate Injection
Tests  (CIT) are conducted at 14 wells
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6. Domain for the CIT Analysis
6.1. Data and Experiment Setting
 4 out of 14 CIT with 8-9 observation wells per test *
 No direct K measurements
 Linear interpolation to remove the river fluctuation effect
6.2. Inversion Setting
 24 anchors (labeled): 20 at the EBF wells
 Only zeroth moments as data for inversion *
 MCMC algorithm to obtain the posterior distribution
 Multivariate Gaussian approximation for the likelihood estimation * Due to computational limitation

9. Future Work
 Optimize the number of anchors and their locations
 Utilize all the pumping tests
 Estimate the heterogeneous storage coefficient
 Implement a 3D geostatistical model with 3D temporal
moment equations for combining EBF/CIT:
computational efficiency needs to be improved

4. CIT Analysis Model in 2D: Theory
* Although the aquifer is unconfined, the flow converged to the 2D radial flow in less than 30 seconds
during CIT, due to coarse-grained and highly permeable mature of the formation.

4.1. 2D Geostatistical Model:Method of Anchor Distribution (MAD)
Assumption: Log-transmissivity is multivariate Gaussian: log-T ~ MVN (µc, Cc)
     - µc, Cc: mean vector and covariance matrix conditioned on anchors
Parameters
• Structural parameters: θ ={mean, variance, scale}
• Anchors: ψ = {ψ1,  ψ2, ...., ψp}

  - Anchors serve as conditioning points of the field
  - CIT data is transferred to anchor values through inversion

4.2. Temporal moments of drawdown in the CIT [Zhu and Yeh, 2005]

 mk: k-th moment of drawdown, s(x),  in the observation well at x
            Moment Equations

            T: transmissivity, S: storage coefficient  Q : injection rate
          τ : injection duration, tend : end time of recovery

        H0: ambient head, xp : pumping well location

         with B.C.
Advantage
 Reduction of data dimensions from an entire time series of the drawdowns
 Flexibility to include complex ambient head fluctuation (river fluctuation)

4.3. Bayesian Geostatistical Inversion
Obtain the posterior distribution of parameters conditioned on the temporal moments

p(θ,ψ | m0, m1, m2.....) ∝ p( m0, m1 , m2..... |θ, ψ) p(θ,ψ)

    Likelihood: estimated using MC simulations of moments
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2. Challenge
High permeability of the Hanford formation
Zone-of-influence in the CIT expands rapidly
→ Conventional type-curve analyses can yield
only large-scale effective conductivity
regardless of well distances. [Sánchez-Vila et
al.,1999]
→ Artificially smooth out variability of the field

3. Our Proposal
Use the temporal moments of drawdown in the
CIT to estimate point-scale T at the EBF wells
through geostatistical inversion techniques

5. Conversion of EBF Data to Absolute K
  Krij: Measured “relative” conductivity at Interval i of Well j in EBF
  Tj: Estimated T at Well j from CIT data and geostatistical inversion
  bj: Aquifer thickness at Well j during CIT

→ Point-scale conductivity at interval i of well j and :Kij
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7. Results
* Conventional method: type-curve analysis at each injection well for T estimation
7.1. Estimated 2D Mean T Field                           7.2. Impact of Multiple Injection Tests

7.1. 3D K field Parameters                              7.4. Estimated 3D Mean K Field (saturated region)

(b) MAD + temporal moments(a) Conventional Method

 Our method can resolve local heterogeneity, while
the conventional method smoothes it out.

(b) Anchor Distribution(a) Structural parameters

More data = sharper distribution, uncertainty reduced

- Compare the results from 1 (center) and 4 injection tests

 The conventional
method underestimates
variability of the field

8. Summary
 Demonstrated methodology for combining EBF and CIT, in order to
characterize the local-scale heterogeneity of hydraulic conductivity in a
high permeable formation.
 Geostatistical inversion with MAD and temporal moments of
drawdowns is used to estimate the local-scale transmissivities, to convert
the EBF data to point-scale conductivities..
 Applications to IFRC experimental data: estimates of geostatistical
parameters indicate larger variability than conventional approach.
 Obtained 3D heterogeneous conductivity field.

vertical scale                     → 3D K field


