
The Development of Comparative Information Yield Curves for Application to
Subsurface Characterization

by

Felipe Pereira Jorge de Barros

M.S. (Universidade Federal do Rio de Janeiro, Brazil) 2004
Engen (Universidade Federal do Rio de Janeiro, Brazil) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering-Civil and Environmental Engineering

in the

GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Yoram Rubin, Chair
Professor Fotini Katopodes Chow
Professor Fraydoun Rezakhanlou
Professor Reed Maxwell

Spring 2009



The dissertation of Felipe Pereira Jorge de Barros is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

Spring 2009



The Development of Comparative Information Yield Curves for Application to

Subsurface Characterization

Copyright Spring 2009

by

Felipe Pereira Jorge de Barros



1

Abstract

The Development of Comparative Information Yield Curves for Application to Subsurface

Characterization

by

Felipe Pereira Jorge de Barros

Doctor of Philosophy in Engineering-Civil and Environmental Engineering

University of California at Berkeley

Professor Yoram Rubin, Chair

Defining rational and effective hydrogeological data acquisition strategies is of crucial

importance in subsurface contamination as such efforts are always resource limited. Usually strate-

gies are developed with the goal of reducing uncertainty, but less often they are developed in the

context of their impacts on uncertainty. This work presents an approach for determining subsur-

face site characterization needs based on human health risk. The main challenge is in striking a

balance between reduction in uncertainty in hydrogeological, behavioral and physiological param-

eters. Striking this balance can provide clear guidance on setting priorities for data acquisition and

for better estimating adverse health effects in humans. This challenge is addressed through theoreti-

cal developments and numerical simulation. A wide range of factors that affect site characterization

needs are investigated, including the dimensions of the contaminant plume and additional length

scales that characterize the transport problem, as well as the model of human health risk. With the
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proposed approach, conditions are investigated where reduction of uncertainties from flow physics,

human physiology and exposure related parameters might contribute to a better understanding of

human health risk assessment. The concept of comparative information yield curves is used for

investigating the relative impact of hydrogeological and health-related parameters in risk. Results

show that characterization needs are dependent on the ratios between flow and transport scales

within a risk-driven context. Additionally these results indicate that human health risk becomes less

sensitive to hydrogeological measurements for large plumes. This indicates that under near-ergodic

conditions, uncertainty reduction in human health risk may benefit from better understanding of the

physiological component as opposed to a more detailed hydrogeological characterization. Other

results show that the worth of hydrogeological characterization in human health risk depends on the

interplay between the characteristic time the contaminant plume takes to cross an environmentally

sensitive target and on the exposure duration of the population. Finally, the role of geostatistical

model uncertainty in defining sampling networks and its relevance in human health risk is also

addressed.

Professor Yoram Rubin
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

Groundwater is one of the major sources of drinking water and it is widely used in the

agricultural and the industrial sector. Understanding how contaminants are transported in the sub-

surface and evaluating the risks they pose to humans are important environmental issues. For ex-

ample, an accidental oil spill or the occurrence of leaking hazardous waste storage may severely

affect groundwater quality. Thus characterization of the subsurface is vital in order to predict the

magnitude of contaminant concentrations and associated human health risks.

Quantifying flow processes in natural porous formations is a challenge given the underly-

ing heterogeneity in the subsurface. Soil properties, such as the hydraulic conductivity and porosity,

exhibit a high degree of spatial variability at all length scales [Gelhar, 1993; Dagan, 1989; Dagan

and Neuman, 1997; Rubin, 2003]. Ignoring the existence of spatial heterogeneity in groundwater

quality modeling can result erroneous decision making. Often, such decisions are motivated by

cleaning up a contaminated site to reach compliance criteria established by a drinking water stan-
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dard. In most cases, such compliance criteria are often associated with an acceptable risk determined

by an environmental regulation agency [USEPA, 1989].

Given the aforementioned reasons, it is of importance to characterize the subsurface ade-

quately in order to capture the spatial patterns of heterogeneity. Given that financial resources are

limited, hydrogeologists face the challenge of data scarcity. The combination of subsurface spa-

tial heterogeneity and the scarcity of data leads to uncertainty in model predictions (for example,

flow and contaminant transport models) and consequently, uncertainty in evaluating human health

risk. Hence, incorporating hydrogeological data helps reduce the involved uncertainties. Tighter

confidence bounds of concentration estimates at an environmentally sensitive target will allow for a

more reliable prediction of human health risk [Rubin et al., 1994; Andricevic and Cvetkovic, 1996;

Maxwell et al., 1999].

Besides the uncertainty stemming from insufficient hydrogeological data, the incomplete

knowledge of how humans metabolize certain contaminants and how they are exposed to such chem-

icals also contributes to the total uncertainty in the estimates in human health risk. Thus, human

health risk assessment consists of two main uncertain components: Hydrogeological and physio-

logical. Therefore, it is natural to formulate human health risk in terms of a probabilistic framework

that accounts for the uncertainty in both health-related and hydrogeological components [Andricevic

and Cvetkovic, 1996; Maxwell et al., 1999]. In fact, modern environmental regulations recommend

application of such probabilistic tools to evaluate human health risk [USEPA, 2001].

The aforementioned sources of uncertainty lead to the following fundamental questions

associated with subsurface site characterization:

1. Given the multi-component characteristics of health risk assessment and their corresponding
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uncertainties, how much effort should one invest in data acquisition?

2. Under what conditions does the uncertainty in human physiological response overwhelms the

uncertainty arising from subsurface characterization?

3. Are we able to identify conditions where a detailed geological site characterization is justi-

fied?

To answer these questions, one must be able to define rational and effective hydrogeological data

acquisition strategies guidelines. Such an approach is of crucial importance in subsurface contami-

nation as such sampling efforts are always resource limited. In most cases, strategies are developed

with the goal of reducing uncertainty, but less often they are developed in the context of their im-

pacts on uncertainty. This work presents an approach for determining task-oriented subsurface site

characterization needs. More precisely, characterization needs will be addressed within a human

health risk context.

1.2 Scope of the Dissertation

In the current dissertation, a stochastic human health risk framework that accounts for

the uncertainties arising from physical (flow and transport) and health-related (physiological) com-

ponents is developed. The intention is to have a rational approach that illustrates conditions in

which characterization efforts, when counter-balanced with the uncertainty present in the health

risk-related parameters, can be reduced. This is achieved by considering the scales of the contami-

nant plumes, geostatistical correlation lengths, travel distances, scales of capture-zones induced by

the action of pumping wells and finally, pore-scale dispersion. Chapters 2-4 contain an individual
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introduction, literature review, test-case, discussions and summary. In the following paragraphs, an

overview of each chapter is given.

Chapter 2 introduces a general probabilistic framework that will serve as the underly-

ing foundation for the subsequent chapters. A human health risk cumulative distribution function

(CDF) is analytically developed to account for both uncertainty and variability in hydrogeological

as well as human physiological parameters. Flow and transport are quantified using analyical solu-

tions based on Lagrangian formulations. Results in this chapter indicate how the human health risk

cumulative distribution function becomes less sensitive to uncertainty in physiological parameters

at lower risk values associated with longer travel times. An information entropy-based graphical

tool is introduced that allows investigating the relative impact of hydrogeological and physiological

parameters in human health risk. A metric α that relates hydrogeological uncertainty to physiolog-

ical uncertainty is developed. Other results in Chapter 2 show that the worth of hydrogeological

characterization in human health risk depends on the time the contaminant plume takes to cross the

control plane and on the exposure duration of the population to certain chemicals.

In Chapter 3, issues concerning the significance of physical scales in defining character-

ization needs are investigated. Such physical scales are: (i) subsurface heterogeneity correlation

scales, (ii) pore-scale dispersion, (iii) contaminant source dimensions, (iv) capture-zones and finally

(v) concentration sampling scales. Also, the role of alternative risk models in defining character-

ization needs is addressed. Just as in Chapter 2, the concept of information entropy is invoked

to evaluate uncertainty trade-offs between hydrogeological and health-related parameters. The de-

velopment of comparative information yield curves is introduced to investigate the relative impact

of uncertainty in human health risk. The framework introduced in Chapter 2 is also extended in
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Chapter 3 to account for geostatistical model uncertainty. A procedure to estimate the worth of data

prior to sampling in the information yield curves is also developed in order to aid decision makers

in setting priorities towards data acquisition. In this chapter, the governing equations for flow and

transport are solved numerically. Concentration statistics conditional on hydrogeological data at an

environmentally sensitive location are obtained through Monte Carlo simulation.

The results in Chapters 2 and 3 indicate that risk uncertainty reduction benefits more from

hydrogeological sampling under certain conditions (for example, non-ergodic transport). To eval-

uate concentrations with less uncertainty, one must be able to capture the geostatistical description

of the subsurface (i.e., the mean, trends, covariance models and their parameters). In general, geo-

statistical models that describe the spatial correlation patterns in the subsurface are considered to

be known and given a priori [Dagan and Neuman, 1997]. This contradicts the fact that only few

or even no data at all offer support for such assumptions prior to exploration effort. The objective

of Chapter 4 is to relax the assumption of considering parametric uncertainty only within a single

covariance model. For this reason, uncertainty within the geostatistical model is also considered and

its impact in subsurface characterization is shown. In Chapter 4, the Matérn family of covariance

functions is used to describe the geostatistical model. The Matérn family of covariance functions

has an additional parameter that controls shape of the model. Controlling model shape by a param-

eter converts covariance model selection to parameter identification and resembles Bayesian Model

Averaging [Hoeting et al., 1999; Neuman, 2003] over a continuous spectrum of covariance models.

A series of synthetic test cases are simulated in this chapter to show the importance of geostatistical

model uncertainty in the sampling design. The prediction variance of contaminant concentration

or arrival time at an environmentally sensitive location is minimized by optimal placement of hy-
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draulic head and hydraulic conductivity measurements. A variation of the information yield curves,

presented in Chapter 3, are again used to illustrate the data worth. It is shown how the uncertainty

arising from the lack of full knowledge in the subsurface formation affects the sampling patterns.

In addition, Chapter 4 shows how it is important to consider task-oriented minimization to define

characterization needs. The relevance and applicability of the results in human health risk is also

addressed.

Finally, a summary of the results and main findings are given in Chapter 5. Appendices

describing in detail derivations and the numerical tools used here are included. Although every

mathematical symbol used is carefully explained throughout the thesis, a notation list is added in

the end of Chapters 2-4.
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Chapter 2

A Risk-Driven Approach for Subsurface

Site Characterization

2.1 Introduction

There are two main contributors to human health risk assessment due to groundwater

contamination: the first is contaminant transport and the second is human physiology and expo-

sure parameters [Maxwell et al., 1999]. Understanding the interactions between the uncertainty

and variability present in each of these elements is a challenge when managing the remediation

of contaminated sites due to the high costs associated with site remediation [James and Gorelick,

1994].

Flow and transport in the subsurface are complicated processes to model since natural

geologic media are both heterogeneous and uncertain. Uncertainty present in hydrogeology arises
1This chapter is based on a published article in Water Resources Research, 2008. (Vol.44, N.1, W01414,

doi:10.1029/2007WR006081)
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from scarcity of data, measurement errors and spatial variability of flow properties such as the

hydraulic conductivity K(x) and the porosity φ(x) [Dagan, 1984, 1987; Rubin, 2003]. The het-

erogeneity patterns are sometimes difficult to capture and require large quantity of data to properly

map the aquifer’s flow properties. These uncertainties and variabilities lead to uncertainty in pre-

dicting the spatial distribution of contaminants in groundwater propagating uncertainty in assessing

concentration of contaminants in drinking water supplies.

The uncertainty and variability present in the human physiology and exposure parameters

are also important factors to consider. Individuals consuming contaminated subsurface water also

add uncertainty in risk assessment since human physiology and toxicology are not fully understood

and each individual may have different exposure and response to a certain chemical [McKone and

Bogen, 1991; Maxwell and Kastenberg, 1999].

Previous work on human health risk assessment tied risk assessment to the contaminant

transport problem [Andricevic and Cvetkovic, 1996; Maxwell and Kastenberg, 1999; Maxwell et al.,

1999]. In these references, general methodologies were proposed to relate hydrogeological charac-

terization with risk assessment and to identify the important parameters affecting human health risk

evaluation. Researchers analyzed the effect of hydrological data acquisition in human health risk

error reduction for a wide range of hydrogeological conditions [Maxwell and Kastenberg, 1999;

Maxwell et al., 1999].

Additional efforts are needed to understand and identify the conditions under which each

of the risk contributors can lead to a significant risk reduction through data acquisition. This chapter

presents a theoretical framework to investigate the benefits of better sampling of hydraulic conduc-

tivities and exposure parameters on risk assessment. The relationship between human exposure and
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hydrogeological characterization is also investigated. The statistical moments of risk are explicitly

and analytically derived accounting for parametric uncertainty in physiology and flow.

The probabilistic formulation present in this chapter provides tools to answer the follow-

ing questions: What variables are significant in human risk assessment? How does information

translate into risk assessment? When do human behavioral variability and uncertainty in physiol-

ogy become important compared to hydrogeological uncertainty? What impact do environmental

regulations have on hydrogeological characterization? When is a detailed site characterization jus-

tified?

2.2 Problem Formulation

We consider a groundwater contamination problem that can potentially cause adverse

health effects to a certain population. To quantify these adverse health effects, the concept of risk

is defined. In this paper, risk, denoted by r, is the increased individual probability of developing

cancer during a lifetime due to exposure to a certain contaminant (or sometimes denoted as increased

cancer risk).

In a deterministic situation, r can be defined without uncertainty. Let us define θH and

θP respectively as vector of parameters needed for hydrogeological characterization and for phys-

iological characteristics, respectively. The vector θH is used to solve the flow problem, while θP

is used to analyze the outcome of the flow and transport problem on humans, in terms of adverse

health effects.

A deterministic θH can include a detailed spatial distribution of the hydrogeological pa-

rameters, such as the hydraulic conductivity, θH={K1, K2, K3,...,KN} where Ki = K(xi) and N
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is the total number of hydraulic conductivities needed.

However, in general, we do not have the vector {K1, K2, K3,..., KN} and as a result

we model the hydraulic conductivity and/or other parameters as Space Random Functions, SRF

[Dagan, 1984, 1987; Rubin, 2003]. In this case, θH will include parameters of the SRF.

As for the physiological and exposure parameters, we have θP = {P1, P2, P3,...,PI}

where Pi represents a vector of physiological and behavioral parameters for the ith individual within

an environmentally impacted population. Here, I is the total number of individuals present in the

target population. It is clear that it is impossible to have a deterministic knowledge of all physio-

logical and behavioral parameters for each individual within I . For these reasons, we resort to a

statistical characterization of these parameters.

The increased cancer risk cumulative distribution function is denoted by FR (r| θH , θP ),

where the subscript R denotes the random variable for risk. Here the vectors θH and θP contains

parameters of the statistical models for the uncertain parameters. Using a cumulative distribution

function (CDF) to describe human health risk allows one to determine the probability of risk being

below or above a certain regulatory standard denoted by r∗ [USEPA, 1989]. The increased cancer

risk probability density function (PDF) is denoted by fR(r).

In many cases, measurements, denoted here by the set {m}, may be available. These

measurements could be hydrogeological or physiological. Our first goal is to derive an expression

for the risk CDF conditioned on a set of measurements: F c
R(r|θH , θP ) = FR(r|θH , θP , {m}).

Here, the superscript c indicates that the CDF is conditioned on measurements. The conditioned

CDF for risk given vectors of hydrogeological parameters, θH , and physiological parameters, θP ,

can be written mathematically as follows:
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F c
R(r∗|θH , θP ) = Prob[R ≤ r∗|θH , θP ] , (2.1)

The major challenge that drives this study is in deriving an explicit expression for equa-

tion (2.1) that allows us to identify, for a range of risk values r, the effect of increased sampling of

hydraulic conductivities and physiological and exposure parameters on F c
R(r|θH , θP ), while trans-

lating correctly the uncertainty in hydrogeology, exposure and physiology into uncertainty of r.

With a solution for equation (2.1), we can address questions such as: How to allocate resources be-

tween θH and θP estimation for optimal reduction in uncertainty? How does this allocation depend

on travel time and exposure duration?

2.3 Solution Methodology

In this section, a human health risk model is presented and a closed-form expression for

the risk CDF given in equation (2.1) is derived.

2.3.1 Human Health Risk Formulation

Risk can be defined by an exponential model for high carcinogenic risk levels, see USEPA

[1989]. This model is used when a target population is exposed to high doses of a certain chemical.

Increased cancer risk due to groundwater contamination, denoted by r, is given as:

r = 1− Exp [−ADDM × CPFM ] , (2.2)

where CPFM [kg-d/mg] is the metabolized cancer potency factor and ADDM [mg/(kg-day)] is the

average daily dose metabolized. It is given as:
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ADDM = fmo ×ADDG + fmr ×ADDH + fmr ×ADDD, (2.3)

where ADDG, ADDH and ADDD are the average daily exposure from ingestion, inhalation and

dermal sorption, whereas fmo and fmr are the metabolized fraction of a certain carcinogenic con-

taminant from ingestion and inhalation (or dermal exposures) respectively. Note that the metabo-

lized fractions are dimensionless [Maxwell and Kastenberg, 1999]. For this work, we will consider

only risk due to ingestion of tap water. USEPA [1989] illustrates how to evaluate risk for other

pathways and mathematical expressions for ADDH and ADDG are given in Maxwell et al. [1998].

The average daily dose for the groundwater pathway is dependent on the flux-averaged

concentration at some specific location, Cf [Kreft and Zuber, 1978; Cvetkovic et al., 1992; Dagan

et al., 1992], and on human behavioral and exposure parameters [USEPA, 1989; McKone and Bogen,

1991; Maxwell and Kastenberg, 1999]. The flux-averaged concentration is the link between the

contaminant source and the receptor. The average daily exposure is defined by USEPA [1989]:

ADDG = Cf × IR

BW

ED × EF

AT
, (2.4)

where IR is the ingestion rate of water (l/d), BW body weight (kg), AT is the average time of

the expected lifetime (d), ED is the exposure duration (y) and EF is the daily exposure frequency

(d/y). All of these parameters are based on EPA guidelines [USEPA, 1989].

The flux-averaged concentration at any point in space (x) and time (t) is given by the ratio

between the total mass flux Q(x, t) and the measured water flux Qw(x):

Cf (x, t) =
Q(x, t)
Qw(x)

. (2.5)
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Due to uncertainty and spatial variability of the hydraulic conductivity, Q(x, t) is re-

garded here as a SRF [Dagan, 1984, 1987]. Expressions for the mean of the total solute mass flux,

〈Q(x, t)〉, and its variance, σ2
Q(x, t), are available depending on how fast the contaminant is released

into the aquifer and its source geometry [Cvetkovic et al., 1992; Dagan et al., 1992; Andricevic and

Cvetkovic, 1996, 1998; Rubin, 2003].

We will assume that Cf is the actual concentration of the chemical present in tap wa-

ter. Other authors have incorporated a larger number of wells to their simulations and presented a

methodology to average the concentration of these numerous wells [Maxwell et al., 1999].

Increased cancer risk can be estimated using an average concentration over the exposure

duration or the peak concentration:

Cf (x) =
1

Qw(x)

[
1

ED

∫ Ti+ED

Ti

Q(x, t)dt

]
, (2.6)

with Ti being the time where exposure begins. If the peak concentration is used to estimate increased

cancer risk, Cf will have the following form:

Cf (x) =
1

Qw(x)
max

t
{Q(x, t)} . (2.7)

Here, Cf lumps all transport and flow related variables (θH ) while the parameter vector

θP includes IR, BW , ED, AT , fmo and CPFM for each (or an average) individual. This allows us

to use the approach described in the previous section to investigate the relation between uncertainties

from hydrogeological variables and health related parameters.
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2.3.2 Mathematical statement of FR(r)

To obtain a closed-form expression for equation (2.1), we need the first two moments of

risk, assuming its distribution is normal or lognormal. As seen previously, increased cancer risk is a

function of Cf . A deterministic increased cancer risk was denoted by r and the random variable for

increased cancer risk is denoted by R. Since the uncertainty and variability of the hydrogeological

media is lumped within Cf , we may write the moments of R as follows:

〈R〉 =
∫ ∞

0
R(cf )fc(cf )dcf (2.8)

〈R2〉 =
∫ ∞

0
R2(cf )fc(cf )dcf , (2.9)

where fc(cf ) is the PDF of Cf .

To derive explicit expressions for equations (2.8) and (2.9) we make use of the travel

time approach to evaluate solute fluxes at a plane in space perpendicular to the mean flow direction

[Shapiro and Cvetkovic, 1988; Dagan and Nguyen, 1989; Dagan et al., 1992; Cvetkovic et al.,

1992; Rubin and Dagan, 1992; Andricevic et al., 1994; Andricevic and Cvetkovic, 1996; Rubin,

2003]. Travel time is the time that solute particle released at time to takes to travel from an initial

location a within the release source domain denoted by Ω, to a control plane situated a distance L

from the source as shown in Figure 2.1.

Due to the spatial variability and uncertainty of the aquifer’s properties (i.e.,the hydraulic

conductivity), the travel time, denoted here by τ , is also random and a PDF conditioned on mea-

surements, g1 (τ |L,a, to, θH , {m}), can be used to describe the travel time distribution at a control

plane situated at a distance L [Shapiro and Cvetkovic, 1988; Dagan and Nguyen, 1989; Rubin and

Dagan, 1992]. A Lagrangian formulation allows one to compute the solute mass flux at a con-
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Figure 2.1: Problem configuration for an uniform-in-the-average flow with mean velocity U .

trol plane (used to denote an environmentally sensitive target) while accounting for variability and

uncertainty of the subsurface [Dagan et al., 1992; Cvetkovic et al., 1992]. Details of derivations,

closed-form solutions for g1(τ |L, a, to, θH , {m}) and theoretical aspects of this methodology can

be found in the literature [Dagan et al., 1992; Cvetkovic et al., 1992; Rubin, 2003]. Now we may

write the flux-averaged concentration as a function of the following variables, Cf≡f(τ,t,L,a,to,

θH ,{m}), and equations (2.8) and (2.9) may be rewritten in terms of the travel time PDF.

The random variable function R(Cf ) is now written as R(t, τ |L, a, to, θH , θP , {m}) in

order to explicit its dependence on travel time and other related parameters. The expected value of

risk at any time t, given θH , θP and {m} at a control plane is as follows:

〈R(t, τ |L, a, to,θH ,θP , {m})〉 =
∫ ∞

0
R(t, τ |L,θH , θP , {m})g1(τ |L, a, to, θH , {m})dτ (2.10)

For the second temporal moment of risk we make use of the two-particle travel time PDF,

g2(τ, τ ′|L, a, a′, to,θH , {m}). It is the probability density of the event that two particles originat-

ing at position vectors a and a′, released at time to, will cross the control plane at time τ and τ ′
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respectively. The two-particle travel time PDF can be obtained analytically assuming a bivariate

lognormal form [Cvetkovic et al., 1992] or numerically [Hassan et al., 2001, 2002]. The second

moment of increased cancer risk is:

〈R2(t, τ |L, a, to,θH ,θP , {m})〉 =
∫ ∞

0

∫ ∞

0
R(t, τ |L,θH ,θP , {m})R(t, τ ′|L,θH , θP , {m})

×g2(τ, τ ′|L, a, a′, to, θH , {m})dτdτ ′. (2.11)

Assuming a Gaussian or lognormal distribution for risk, equations (2.10) and (11) allows us to

explicitly write the cancer health risk CDF F c
R(r|θH , θP ) at a given time t. Equation (2.10) is the

mean value of risk while the variance of risk is given as:

σ2
R(t|L, a, to,θH , θP , {m}) ≡ 〈R2(t, τ |L, a, to, θH , θP , {m})〉

−〈R(t, τ |L, a, to,θH , θP , {m})〉2. (2.12)

Below we have the risk CDF conditioned on measurements assuming a lognormal form. The log-

normal assumption relies on the fact that risk has to be positive and that it is a product of several

parameters.

F c
R(r|θH , θP ) =

1
2

+
1
2

Erf

[
ln(r)− µ∗R(t|θH ,θP , {m})

σ∗R(t|θH , θP , {m})√2

]
, (2.13)

where the mean and standard deviation of the variable’s logarithm are given as:

µ∗R(t|θH , θP , {m}) =

ln[〈R(t, τ |L, a, to, θH , θP , {m})〉]− 1
2

ln
[
1 +

σ2
R(t|L, a, to,θH ,θP , {m})

〈R(t, τ |L, a, to, θH , θP , {m})〉2
]

(2.14)
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σ∗R(t|θH , θP , {m}) =

√
1 +

σ2
R(t|L, a, to, θH , θP , {m})

〈R(t, τ |L, a, to, θH , θP , {m})〉2 , (2.15)

here the conditional information of L, a and to on the left hand side of equations (2.13)-(2.15) has

been neglected to simplify the notation.

To consider uncertainty and/or variability in the human health risk parameters and hydro-

geological parameters, we use Bayes’ theorem given that the PDF for the physiological parameters,

fP (θP ), and hydrogeological parameters fH(θH) are known and independent:

F c
R(r) =

∫ r

0

∫ ∞

−∞

∫ ∞

−∞
f c

R(r̃|θH , θP )fP (θP )fH(θH)dθP dθHdr̃. (2.16)

Equation (2.16) provides the risk CDF considering the largest possible ensembles for the

values of θP and θH . Equation (2.16) is a useful tool allowing one to investigate the effect of

parametric uncertainty in human physiology or exposure parameters in the final increased cancer

risk distribution.

2.4 Solution of FR(r) for a Finite Duration Point Source Using a La-

grangian Stochastic Approach

The purpose of this section is to illustrate an example using the theoretical framework

developed. Contamination occurs in an aquifer with spatially variable hydraulic conductivity, K(x),

where x = (x1, x2, x3) being the Cartesian coordinate system. The logconductivity is defined as

Y (x) = ln[K(x)]. The aquifer is characterized by the mean and variance of the natural logarithm

of the hydraulic conductivity, mY and σ2
Y respectively, spatial covariance, CY , and the integral
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scale, IY . Let us denote by V = (V1, V2, V3) the groundwater velocity vector. The groundwater

velocity satisfies the continuity equation ∇ · (φV) = 0, where φ is the porosity. The velocity field

is heterogenous but considered stationary from a statistical perspective. Flow is at steady state and

occurs at a low Reynolds number allowing the use of Darcy’s Law.

Fate and transport is quantified by the flux-averaged concentration, Cf (x, t) expressed

in equation (2.5) [Kreft and Zuber, 1978; Cvetkovic et al., 1992; Dagan et al., 1992]. It varies

spatially and temporally and is a function of flow and transport parameters. A high Peclet condition

is considered and transport is assumed to be advective and reactive.

2.4.1 Moments of the total solute mass flux

In the present subsection, expressions for the moments of the total solute mass flux are

derived for a particular uniform-in-the-average flow. The mean flow is taken in the x1 direction such

that the longitudinal velocity is expressed as a sum of a mean value and its fluctuation, V1 = U +u′.

This implies that the streamlines are, in an average sense, parallel to the mean groundwater flow,

where U ≡ 〈V1〉. The aquifer is confined, fully saturated and the variance of the logconductivity,

σ2
Y , is small allowing the use of the low-order approximation for the travel time moments given in

previous works [Cvetkovic et al., 1992; Dagan et al., 1992]. These low-order approximations for

the travel time moments were verified numerically in Bellin et al. [1993] and will be used to derive

the statistical temporal moments of the mass flux.

The case of continuous contaminant release will be used as a starting point to derive the

moments of the total solute mass flux. The contaminant source strength is given by the function

ṁ(a, t̃). Chemical reactions are accounted by the pulse reaction function γ(t− t̃, τ) [Cvetkovic and

Dagan, 1994; Andricevic and Cvetkovic, 1996; Cushey and Rubin, 1997]. This function depends on
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the chemical process occurring during solute transport.

The mass flux is quantified at a control plane situated a distance L from the source domain

Ω (see Figure 2.1). All particles will be transported along a streamline and will cross the control

plane in a given finite time. For a continuous source release we have:

Q(t, τ |L,Ω, to) =
∫

Ω

∫ t

to

ṁ(a, t̃)γ(t− t̃, τ) dt̃ dχa, (2.17)

with χ the dimensionality of the physical domain of the contaminant source. Equation (2.17) gives

us the contribution at the control plane of a solute mass, ṁ(a, t̃ )dt̃ dχa, released at a location a ∈ Ω

at t̃.

Let Mo be the mass injected during a period To in a single location ao ∈ Ω at a time to.

In this case, the source strength function is given by:

ṁ(a, t̃ |ao, To, to,Mo) =
Mo

To
δ(a− ao){H[t̃− to]−H[t̃− to − To]}, (2.18)

where H[·] is the Heaviside function. The total solute is:

Q(t, τ |L, ao, To, to,Mo) =
∫ t

to

Mo

To
{H[t̃− to]−H[t̃− to − To]}γ(t− t̃, τ)dt̃. (2.19)

If non-reactive transport occurs, we have γ(t− t̃, τ) = δ(t− t̃− τ) [Cvetkovic and Dagan, 1994].

Under the assumption of linear equilibrium, the γ pulse reaction function becomes a function of the

retardation coefficient Rf [Cvetkovic and Dagan, 1994; Cvetkovic et al., 1998]:

γ(t− t̃, τ) = δ(t− t̃− τRf ) (2.20)
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Substituting equation (2.20) into equation (2.19) we obtain:

Q(t, τ |L, ao, To, to, Mo, Rf ) =
Mo

To
{H[t−Rf τ − to]−H[t−Rf τ − to − To]} (2.21)

Note that in the above equation, Rf is deterministic. Taking the expected value for all

possible travel time values, we obtain the first moment of the total solute mass flux at the control

plane:

〈Q(t, τ |L, ao, To, to,Mo, Rf ,θH , {m}) =
Mo

To
∆Gτ (t|L, ao, To, to, Rf , θH , {m}), (2.22)

with:

∆Gτ (t|L, ao, To, to, Rf , θH , {m}) = Gτ (B|L, ao, to,θH , {m})−Gτ (A|L, ao, to, θH , {m}) ,

(2.23)

Gτ (t|L) =
1
2

Erfc

{
L− U t√
2X11(t)

}
, (2.24)

and

A ≡ A(t|to, To, Rf ) =
t− to − To

Rf
, (2.25)

B ≡ B(t|to, Rf ) =
t− to
Rf

, (2.26)

where the functions Gτ (B|L, ao, to, θH , {m}) and Gτ (A|L, ao, to,θH , {m}) are the travel time

CDF conditioned on measurements and closed-form expressions are found in the literature [Ru-
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bin and Dagan, 1992; Rubin, 2003]. X11(t) is the displacement covariance, whose closed-form

expressions are available [Rubin, 2003]. For this particular case, X11(t) is given as:

X11(t)
σ2

Y I2
Y

= 2
tU

IY
+

3
2
− 3E + 3


Ei

(
− tU

IY

)
+

e
− tU

IY

(
1 + tU

IY

)
− 1

( tU
IY

)2


 , (2.27)

where Ei(·) is the exponential integral and E is the Euler constant equal to 0.5777 [Rubin, 2003].

For the second temporal moment of the total solute mass flux at L, we make use of the

following expression:

lim
a→ao

g2(τ, τ ′|L, ao, a, to, θH , {m}) = g1(τ |L, ao, to, θH , {m})δ(τ − τ ′), (2.28)

since we are dealing with a point source a=ao. So as a limiting case given in the literature [Cvetkovic

et al., 1992; Andricevic and Cvetkovic, 1996] we may write the two particle travel time PDF as in

equation (2.28). So, we have:

〈Q2(t, τ |L, ao, To, to,Mo, Rf ,θH , {m})〉 =
M2

o

T 2
o

∆Gτ (t|L, ao, To, to, Rf ,θH , {m}), (2.29)

with A and B defined in equations (2.25)-(2.26) and ∆Gτ is given in equation (2.23). An appendix

is included with a detailed derivation of equation (2.29) (see Appendix A). In summary, expressions

(2.22) and (2.29) are the temporal moments of the total solute mass flux for a point source of finite

duration To. The variance of the total solute mass flux is given by:



22

σ2
Q(t|L, ao, To, to,Mo, Rf , θH , {m}) ≡ 〈Q(t, τ |L, ao, To, to,Mo, Rf , θH , {m})2〉

−〈Q(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉2

(2.30)

hence,

σ2
Q(t|L, ao, To, to,Mo, Rf , θH , {m}) =

M2
o

T 2
o

∆Gτ (t|L, ao, To, to, Rf , θH , {m})

− M2
o

T 2
o

[∆Gτ (t|L, ao, To, to, Rf , θH , {m})]2,

(2.31)

where ∆Gτ is given in equation (2.23). The resulting equations derived here will be used in the

next subsection to obtain the risk CDF conditioned on measurements.

2.4.2 Linear risk model

For small doses, a linear increased cancer risk model can be used instead of equation

(2.2). A simplified equation for increased human cancer risk due to groundwater ingestion for any

given time t is as follows:

r(t, τ |L,θH ,θP , {m}) = fmo ×ADDG(t, τ |L, ao, to, θH , θP , {m})× CPFM , (2.32)

where ADDG depends on total solute mass flux, see equations (2.4) and (2.5) and is written in

terms of τ .

In order to separate which variables are health related and which ones are hydrogeological,

we define a function that depends only on health related parameters, β(θP ):
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β(θP ) = fmo × CPFM × IR

BW

ED ×EF

AT
, (2.33)

with θP ={fmo, CPFM , IR, BW, ED, EF, AT}. The variable β(θP ) incorporates all behavioral

and physiological parameters (i.e., body weight, tap water intake, exposure duration, etc).

Re-arranging the terms in equation (2.32), the linearized increased cancer risk model

becomes:

r(t, τ |L, ao, to, θH , θP , {m}) = β(θP ) Cf (t, τ |L, ao, to,θH , {m}), (2.34)

where the flux-averaged concentration, as shown in equation (2.5), is re-written in terms of travel

time and is conditioned on hydrogeological parameters and measurements to allow the use of the

theoretical framework of the previous section, Cf (L, t) ≡ Cf (t, τ |L, ao, to, θH , {m}). The equa-

tion above involves two variables: Cf (t, τ |L, ao, to, θH , {m}) and β(θP ). Through parametric

uncertainty, see equation (2.16), we can account for uncertainty in θP .

Substituting equation (2.5) into equation (2.34), the first and second statistical moments

of the increased cancer risk are given in equations below:

〈R(t, τ |L, ao, To, to,Mo, Rf , θH , θP , {m})〉 =
β(θP )
Qw(L)

〈Q(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉

(2.35)

σ2
R(t|L, ao, To, to,Mo, Rf , θH , θP , {m}) =

[
β(θP )
Qw(L)

]2

σ2
Q(t|L, ao, To, to,Mo, Rf , θH , {m})

(2.36)
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The first two temporal moments of the total solute mass flux are given in equations (2.22) and (2.29)

for the particular case of a finite duration point source. Substituting equations (2.22) and (2.31) into

(2.35) and (2.36), respectively, we get:

〈R(t, τ |L, ao, To, to,Mo, Rf , θH ,θP , {m})〉 =

β(θP )Mo

Qw(L)To
[Gτ (B|L, ao, to, θH , {m})−Gτ (A|L, ao, to,θH , {m})] (2.37)

and

σ2
R(t|L, ao, To, to,Mo, Rf , θH , θP , {m}) =

[
β(θP )Mo

Qw(L)To

]2

{Gτ (B|L, ao, to, θH , {m})−Gτ (A|L, ao, to, θH , {m})

− [Gτ (B|L, ao, to, θH , {m})−Gτ (A|L, ao, to,θH , {m})]2}, (2.38)

with A and B defined in equations (2.25) and (2.26).
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Figure 2.2: Moments of the normalized increased cancer risk evaluated for three values of η = 3, 5
and 10 with η=L/IY . (a) Mean of R. (b) Standard deviation of R.

Plots illustrating how the mean and standard deviation of risk varies with time are given in
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Figures 2.2.a and 2.2.b for different values of the ratio η=L/IY . The moments of risk were normal-

ized by β(θP )Mo/[Qw(L)To] such that we may observe its behavior as a function of travel time.

Note that the risk moments obtained in this section allow the use of several published expressions

for the moments of the solute flux to account other physical scenarios [Dagan et al., 1992; Cvetkovic

et al., 1992; Andricevic and Cvetkovic, 1996, 1998].

2.5 Relative contribution of information

This section illustrates an application of the theoretical framework developed to identify

conditions where hydrogeological and physiological uncertainty will lead to a better understanding

of risk. We wish to quantify the value of information gained in human health risk through uncer-

tainty reduction in physiological and hydrogeological parameters. The effectiveness of conditioning

FR(r) on measurements of hydraulic conductivity is also investigated. This section consists of three

subsections. The data used in the simulations is presented in the first subsection; the impact of para-

metric uncertainty is investigated in the second subsection and finally the impact of measurements

of hydraulic conductivity in human health risk is shown for the present model.

2.5.1 Data used in simulation

We consider the case of a finite duration point source detailed in the previous section. We

selected the data given in Tables 2.1 and 2.2 to perform our simulations. Increased cancer risk due

to ingestion of contaminated groundwater is evaluated with physiological data based from previous

literature [McKone and Bogen, 1991; Maxwell and Kastenberg, 1999]. For our work, we simulated

a PCE contamination case [Maxwell and Kastenberg, 1999; Maxwell et al., 1999].
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Flow and transport parameters

L 1500, 7500 and 12500 m

U 10 m/d

IY 500 m

σ2
Y 1.5

mY 0

Rf 2.5

To 1 y

to 0

φ 0.2

Table 2.1: Input data used for the flow and transport problem

The impact of uncertainty reduction in θH and θP on FR(r) is accounted for by making

use of equation (2.16) and the PDF from Table 2.2. We have selected U as the parameter to inves-

tigate uncertainty from θH . It is assumed that the PDF for U is lognormal [Andricevic et al., 1994;

Andricevic and Cvetkovic, 1996].

From the human physiology component, we have selected fmo and CPFM since the

pharmokinetic models, from which these parameters were derived, are uncertain [Maxwell and Kas-

tenberg, 1999]. From the exposure and behavioral parameters, we have selected ED to be uncertain.

Other risk-related parameters have the following values: IR/BW=0.033 L/d-kg, AT=22550 d and

EF=350 d/y [USEPA, 1989; McKone and Bogen, 1991; Dawoud and Purucker, 1996].

The statistical distributions adopted for fmo, CPFM , ED and U are in Table 2.2. The
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Uncertain parameters

fmo Uniform[0.2, 0.7]

CPFM Uniform[0.045, 0.175]

ED Uniform[20, 40]

U Lognormal (10, 3.16)

Table 2.2: Statistical distributions for θP and θH

distribution bounds for fmo and CPFM were based, although not exactly the same, from previ-

ous published works [McKone and Bogen, 1991; Maxwell et al., 1998]. We have assumed that

both physiological and behavioral parameters were uniformly distributed. The numbers inside the

parenthesis for the lognormal PDF are the arithmetic mean and standard deviation. For the uniform

PDF, we specified the lower and upper bound of the distribution. These statistical distributions are

assumptions and are used here for illustration purpose of the methodology proposed.

In order to investigate the value of information we will use the concept of entropy to

quantify uncertainty for both physiological and hydrogeological components [Christakos, 1992;

Rubin, 2003]. The entropy for θP is denoted by EP . We may write EP as follows [Christakos,

1992]:

EP = −
∫ ∞

0
fP (θP ) ln[fP (θP )]dθP . (2.39)

For illustration purposes, we have assumed that fmo, CPFM and ED are independent

such that the total entropy for physiology (EP ) is the sum of the individual entropies for each

of these variables [Christakos, 1992]. Note that the proposed framework is not restricted by this
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assumption. For the hydrogeological entropy, denoted by EH , we write as follows:

EH = −
∫ ∞

0
fH(θH) ln[fH(θH)]dθH . (2.40)

For each increase of EH and EP we have a corresponding entropy increase in the risk

CDF relative to a risk CDF with less parametric uncertainty. This risk CDF with less parametric

uncertainty is evaluated using reference entropies for both hydrogeology and physiology. These

reference entropies are denoted by EH, O and EP, O and are obtained by making use of the distri-

butions in Table 2.2 together with equations (2.39) and (2.40). In our definition, EH ≥ EH, O and

EP ≥ EP, O. To evaluate the impact of increased parametric uncertainty of θP and θH in FR(r) we

will use two different metrics.

The first one is the relative entropy in risk, denoted by RER. The relative entropy is

defined as [Christakos, 1992; Rubin, 2003]:

RER =
∫ ∞

0
fo

R(r) ln
[
fo

R(r)
fR(r)

]
dr, (2.41)

where fR(r) is the risk PDF evaluated with EH and EP and fo
R(r) is the risk PDF evaluated with

EH, O and EP, O corresponding to the statistical distributions in Table 2.2.

The second metric used is the percentage difference between the coefficient of variation

for FR(r) evaluated with EH and EP (CVR) and the coefficient of variation with EH, O and EP, O

(CV o
R). This is mathematically equivalent to:

∆CVR =
CVR − CV o

R

CVR
(2.42)

The coefficient of variation for risk is given by: CVR=σR/〈R〉.
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2.5.2 Hydrogeological uncertainty versus physiological and behavioral uncertainty

In the following, we focus on understanding how uncertainty reduction from θH and θP

impacts FR(r). Afterwards, the second part of this subsection is dedicated to illustrate a graphical

tool that can be used to investigate whether the trade-off between uncertainty reduction from θH and

θP exists. All plots presented in this subsection were evaluated using peak concentration, equation

(2.7).
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Figure 2.3: Impact of increased uncertainty of θH and θP in FR at η = 5. Curves for (i)
∆EP =∆EH= 0 ; (ii)∆EP = 0 and ∆EH= 1; (iii)∆EP =1 and ∆EH= 0. Where η=L/IY ,
∆EH=EH −EH, O and ∆EP =EP − EP, O.

Figure 2.3 depicts the comparison of FR(r) for three scenarios. The first one is evaluating

FR(r) with the distributions in Table 2.2 and corresponding entropies EH, O and EP, O. In the

second case, we increase the entropy in θH while keeping fixed the entropy in θP at EP, O. The last

case is the opposite: We increase the entropy in θP while keeping fixed the entropy in θH at EH, O.

For Figure 2.3 and the subsequent plots we have defined ∆EH=EH − EH, O and ∆EP =EP −
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Figure 2.4: Impact of increased uncertainty of θH and θP in FR at η = 25. Curves for
(i) ∆EP =∆EH= 0 ; (ii)∆EP = 0 and ∆EH= 1; (iii)∆EP =1 and ∆EH= 0. Where η=L/IY ,
∆EH=EH −EH, O and ∆EP =EP − EP, O.

EP, O to quantify change in entropy. Results were obtained for η=5 and we note that the effect of

parametric uncertainty in FR(r) is not that strong for the selected data. From this plot we observe

that FR(r) is more sensitive towards parametric uncertainty in hydrogeology, shown by the dashed

curve, than uncertainty in human physiology and behavioral habits, represented here by the dotted

curve.

Figure 2.4 shows results for η=25. Comparing Figures 2.3 and 2.4 we observe that in-

creased parametric uncertainty in θH has a stronger impact in FR(r) at larger η. Similar results for

parametric uncertainty in flow and transport were found in Andricevic and Cvetkovic [1996]. One

possible explanation for this phenomenon at larger η may be due to the fact that the solute plume

has to travel through many more integral scales, thus suffering from variability leading to lower

solute flux peaks (since chemical reaction occurs) and smoother breakthrough curves. Based on this
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plot, reducing uncertainty in flow and transport parameters at larger η through site characterization

improves risk estimates.

We also found that the impact of uncertainty reduction in θP diminishes as η increases.

This opposite behavior in parametric uncertainty reduction on physiological parameters, as opposed

to uncertainty reduction in flow and transport, occurs because the concentration of the plume is

much smaller at longer travel times (large η) than at early travel times (small η), thus posing less

risk when compared to the case shown in Figure 2.3. With smaller concentrations, humans are at

less or at almost no risk independent of how much of that contaminant is being metabolized. From

a management point of view, reducing uncertainty from physiological parameters of the population

may not contribute to better risk estimates at large values of η, which are associated with longer

travel times.

Next we present a graphical tool that allows decision makers to set priorities in contami-

nated site remediation. In order to investigate trade-offs between hydrogeological and physiological

uncertainties we need to define a metric that relates to the amount of information from these two

components. We will make use of the concept of entropy, previously shown, to derive this metric

that can relate to uncertainties from θH and θP and its impact in FR(r). Let α be defined as follows:

α =
10∆EH

10∆EP
, (2.43)

where ∆EH=EH −EH, O and ∆EP =EP − EP, O.

Loss of information in θH means α increasing to values greater than one. This is done

by increasing ∆EH and keeping ∆EP equal to zero. If uncertainty increases in θP while keeping

∆EH=0, α decreases to values less than one with a lower bound equal to 0.
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Figure 2.5: RER as a function of α for η=5, 15 and 25. Loss of information in θH means increasing
∆EH and keeping ∆EP = 0 such that α > 1. Loss of information in θP means increasing ∆EP and
keeping ∆EH= 0 such that 0 < α < 1.

When α equals to one, we have ∆EH=∆EP =0 (with the following constraint: ∆EH 6=

∆EP for values different than zero). This means the amount of information present in θH and θP

at α = 1 are EH=EH, O and EP =EP, O respectively. From a management point of view, the choice

of values for EH, O and EP, O that corresponds to α = 1 can be associated with an acceptable risk

variance given by regulation. For example, one may determine EH, O and EP, O by relating the risk

variance as a function of the solute flux variance, see equation 2.31, as well as the variances of other

risk related parameters. In this case, uncertainty reduction in both EH, O and EP, O is constrained

by risk regulation. As explained before, we will assume EH, O and EP, O are determined from the
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distributions present in Table 2.2 for illustration purposes. The point α = 1 represents the baseline

case, serving as a reference to the other levels of uncertainty and will allow one to investigate

the relative contribution of information from each component essential to risk management. For

example, one may wish to see by how much the coefficient of variation from FR(r) will change for

a change in α. The intention is to relate changes in RER or ∆CVR, equations (2.41) and (2.42), to

α. Figures 2.5 and 2.6 illustrates the idea for different values of η.
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Figure 2.6: ∆CVR as a function of α for η=5, 15 and 25. Loss of information in θH means
increasing ∆EH and keeping ∆EP = 0 such that α > 1. Loss of information in θP means increasing
∆EP and keeping ∆EH= 0 such that 0 < α < 1.

As seen in Figure 2.5, we have RER as a function of α. The behavior presented in Figures

2.3 and 2.4 is also reproduced in this plot. As η increases, we have larger values of RER (for α > 1)
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Figure 2.7: ∆CVR as a function of log(α) for η=5, 15 and 25. Loss of information in θH means
increasing ∆EH and keeping ∆EP = 0 such that log(α) > 0. Loss of information in θP means
increasing ∆EP and keeping ∆EH= 0 such that log(α) < 0.

while the opposite behavior occurs for 0 < α < 1. Parametric uncertainty reduction in hydrogeology

becomes more important for larger η while parametric uncertainty reduction in physiology becomes

less pronounced.

An alternative way of plotting these results is presented in Figure 2.6. Figure 2.6 depicts

∆CVR as a function of α and illustrates how this graphical information could be used for decision

making. For an instance, say we wanted to reduce ∆CVR from 0.1 to 0.05, see pointed lines in

Figure 2.6. Where should we set priorities towards uncertainty reduction? Should we invest in

understanding human physiology or in reducing uncertainty in flow and transport parameters? By
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calculating the slope of the curve corresponding to ∆EP (located left of α=1) and the slope for

∆EH (located right of α=1), one may evaluate the relative impact of each component in FR(r)

as well as the efforts necessary to reduce EP and EH at ∆CVR = 0.1 to their respective values at

∆CVR=0.05.

It is also possible to graphically relate ∆CVR to the actual values of ∆EP and ∆EH by

plotting ∆CVR versus log(α). This is illustrated in Figure 2.7. For α > 1 (log α > 0), we have

log(α) = ∆EH while for 0 < α < 1 (log α < 0) we have log(α) = −∆EP .

In summary, the proposed analysis, presented in Figures 2.5- 2.7, permits decision makers

to investigate whether it is cheaper to reduce ∆CVR (or RER) via hydrogeology or physiology.

2.5.3 Link between site characterization, environmental regulation and human ex-

posure duration

Lastly, we investigate the interplay between exposure duration and site characterization.

Previous works studied the influence of ED on risk [Maxwell and Kastenberg, 1999; Hassan et al.,

2001]. Here we will further investigate how ED may influence site characterization based on

health risk regulation. Environmental regulatory agencies [USEPA, 1989] suggests that the con-

taminant concentration should be averaged over the exposure duration period, shown in equation

(2.6). In general, a 30 or 70 year period is used for exposure duration [USEPA, 1989; Maxwell

et al., 1998]. Depending on the type of contaminant and the characteristics of the target population,

some regulations require the use peak concentrations to evaluate increased cancer risk [Andricevic

and Cvetkovic, 1996]. The peak concentration criteria is also used to develop concentration guide-

lines for decommissioning processes, such as shown in Taylor et al. [2003], to account for the worst

case scenario.
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To evaluate the effect of measurements of hydraulic conductivity in human health risk we

make use of the data available from the literature [Rubin and Dagan, 1992]. In Figure 2.8 we have

the travel time CDF for three different hydraulic conductivity sampling scenarios: unconditioned on

measurements {m1}, conditioned on a sparse grid of measurements {m2}, and finally conditioned

on a dense grid of measurements {m3}. The travel time CDF present in Figure 2.8 were obtained

from Rubin and Dagan [1992] through interpolation of their published data. These interpolated

curves were used as input for the derived risk CDF. It is possible to notice a bias of measurements in

favor of low hydraulic conductivity measurements. A uniform-in-the-average flow condition is the

underlying assumption of the travel time CDF shown in Figure 2.8. These travel time CDF will be

used to illustrate how measurements may affect site characterization decisions. The travel time CDF

unconditioned on measurements {m1} and conditional on a dense grid of hydraulic conductivity

measurements {m3}, shown in Figure 2.8, were chosen to obtain the results in Figures 2.9.a and

2.9.b.

Figure 2.9.a depicts how increased sampling of the hydraulic conductivity plays a role in

site characterization when risk is evaluated using the peak concentration, equation (2.7), instead of

the averaged concentration over the breakthrough curve, equation (2.6). For this particular example,

we selected parameters such that the travel time distribution represents a case in which all of the

solute mass arrives at the control plane within the 30 year exposure duration period for both condi-

tional and unconditional cases. We assume exposure begins when the first solute particles arrive at

the control plane. When averaging the breakthrough curve over the 30 year exposure period for this

case, all solute mass is included in the averaging procedure for both conditional and unconditional

cases. This means Cf of equation (2.6) and its expected values are the same for {m1} and {m3}.
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Figure 2.8: Travel time distributions for uniform-in-the-average flow. Travel time distribution un-
conditioned of measurements {m1}; travel time conditioned on a sparse grid of hydraulic conduc-
tivity measurements {m2}; and travel time conditioned on a dense grid of hydraulic conductivity
measurements {m3} [Rubin and Dagan, 1992].

From this we conclude that FR(r) becomes more sensitive towards increased sampling of hydraulic

conductivity when the duration of the breakthrough is larger than ED. If conditioning causes the

contaminant mass within the averaging period to change, the impact of measurements on FR(r) is

larger.

The sensitivity of FR(r) toward sampling may be generalized by its dependence on res-

idence time of the contaminant plume at the control plane. This residence time is defined as the

time period that the contaminant plume takes to cross the control plane (in other words, the time

window where the concentration is greater than zero). If conditioning travel time to measurements



38

10-7 10-6 10-5 10-4 10-3
0.0

0.2

0.4

0.6

0.8

1.0

 

 
F R

(r
)

r

 {m
3
}, Peak C

 {m
3
}, Average C

 {m
1
}, Peak C

 {m
1
}, Average C

10-8 10-7 10-6 10-5 10-4
0.0

0.2

0.4

0.6

0.8

1.0

 

 

F R
(r

)

r

 {m
3
}, Peak C

 {m
3
}, Average C

 {m
1
}, Peak C

 {m
1
}, Average C

(a) (b)

Figure 2.9: Increased cancer risk cumulative distribution function evaluated with average and peak
concentrations using {m1} and {m3}. (a) All mass arrives at the control plane before ED. (b) Not
all mass arrives at the control plane before ED.

of hydraulic conductivity causes the breakthrough curve to change such that the plume’s residence

time on the control plane increases to values larger than ED, then FR(r) becomes sensitive to

increased sampling even if an averaged breakthrough curve is used to evaluate risk. Figure 2.9.b

illustrates FR(r) for the case in which not all contaminant mass arrives at the control plane during

the averaging exposure time ED for both conditioned and unconditioned scenarios. In this case, hy-

drogeological characterization becomes important independent of the adopted concentration criteria

(peak versus average).
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2.6 Summary and conclusions

Human health risk was addressed using a stochastic framework to account for uncertain-

ties and variabilities present in hydrogeology, human behavioral parameters and human physiology.

A closed-form CDF for increased cancer health risk was derived and the dependence of hydrogeo-

logical and human health information is explicit. The temporal moments of total solute mass flux

were analytically obtained by making use of the Lagrangian formulation. The impact of additional

measurements of hydraulic conductivity on the increased cancer risk CDF was investigated. We

also examined conditions in which reduced or increased uncertainty in risk related parameters, such

as fmo and CPFM , are most likely to affect our understanding of risk. The developed methodol-

ogy also investigated the trade-off between parametric uncertainty reduction from θH and θP in the

final risk CDF through a graphical approach. The present results are obtained by making a few sim-

plifying assumptions: (i) A steady state and uniform-in-the-average flow, (ii) the logconductivity

variance σ2
Y is not large, (iii) human health risk is assumed to be lognormally distributed and (iv)

physiological parameters are independent.

Uncertainty in human health risk parameters and hydrogeological parameters were incor-

porated through parametric uncertainty. For the model, data and simulation presented in this work,

uncertainty reduction in θP and in θH have small impact on FR(r) as previously shown. The effect

of parametric uncertainty in θP decreases as the distance between the contaminant source and the

control plane increases. The low risk values are normally associated with longer travel time values

and, consequently, low concentrations. For low concentration values, FR(r) becomes less sensitive

to how much an individual metabolizes the contaminated dose. High concentrations of the chemical

present in the groundwater implies that the individual is most likely to be at risk and uncertainty
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reduction in the physiological parameters at early travel times may become important. The link

between physiology and early times suggests that further analysis should be done in understanding

how other types of chemical reactions affects uncertainty of risk related parameters on the human

health risk CDF. In this study we used a linear equilibrium reaction. The impact of parametric

uncertainty in θH increases for larger distances between the control plane and contaminant source.

The strongest contribution of this chapter is the introduction of a graphical tool that allows

one to investigate the relative impact of θP and θH on FR(r). It consisted of developing a metric,

α, that accounts for a ratio between information from physiology and hydrogeology. We developed

this metric in such a way that we could analyze the increase of uncertainty in risk around a reference

point α = 1. We used the concept of entropy in order to quantify the total amount of information

contained in θP and θH . By plotting ∆CVR or RER versus α (or log α) we are able to investigate

the relative value of information from hydrogeology and risk related parameters. Values of α larger

than one implies uncertainty increase in θH while α less than one means uncertainty increase in θP .

By quantifying the slopes of these curves, located to the left and right of α = 1, and the corresponding

entropies one may observe where uncertainty reduction through data acquisition, via flow physics

or via physiology, will lead to a better risk estimate. The ratio α is a promising complementary tool

that may assist decision makers in setting priorities in site characterization.

The interplay between exposure duration and hydrogeological site characterization on

FR(r) was investigated. Hydrogeological site characterization becomes dependent on the time the

contaminant plume takes to cross the control plane if the concentration averaged over the exposure

duration period is used to evaluate FR(r). If conditioning travel time causes the mass contained in

the ED averaged breakthrough curve to change then site characterization improves our understand-
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ing of risk. Assuming the exposure begins when the first solute particles arrive at the control plane

we can state the following: If the residence time, defined here as the time period that the contam-

inant plume takes to cross the control plane, of both conditional and unconditional plume is less

than or equal to the exposure duration period, hydrogeological site characterization does not greatly

impact FR(r). This is true when using an averaged concentration breakthrough curve to estimate

risk. However, if the residence time of both conditional and unconditional contaminant plume in the

control plane is larger than the averaging period (i.e. exposure duration) then hydrogeological site

characterization may become important. When using peak concentration to assess adverse health

effects, the influence of additional sampling is more pronounced and affects FR(r) independent

of ED. This result also shows us that exposure duration based on regulation plays an important

role in estimating adverse health effects with strong management implications and should be well

quantified.

To illustrate the theoretical framework, results were obtained with the classical absolute

dispersion theory developed in Dagan et al. [1992] and Cvetkovic et al. [1992]. However, different

results can be obtained when using the relative dispersion framework [Andricevic and Cvetkovic,

1998; Hassan et al., 2001, 2002]. These differences occur when evaluating the magnitude and

arrival time of the peak of the solute flux moments for the case of small contaminant source sizes.

The relative dispersion results approaches and absolute dispersion framework as contaminant source

size increases [Andricevic and Cvetkovic, 1998].

Although pore-scale dispersion was not included in the present analysis we recognize that

it may play a role in risk assessment (in fact, this will be shown in the next chapter). Analyti-

cal expressions obtained in Fiori et al. [2002] for instantaneously injected plumes could be easily
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adapted to the present framework. As shown in Fiori et al. [2002], pore-scale dispersion leads to the

reduction in the peak of the mass flux due to the mass transfer between Darcy-scale stream tubes

leading to smaller risk values. However, the impact of pore-scale dispersion is dependent on the

scale of the sampling area that collects the contaminated water. If the size of the sampling area is of

large dimensions, characterization efforts of dispersivities may not be as important since the mixing

effect induced by sampling becomes more important than pore-scale dispersion.

It is worth mentioning that most of the results obtained in the present chapter are limited

to simple scenarios (small values of σ2
Y ) and extending a similar analysis to more complicated

problems may lead to many interesting conclusions when it comes to the uncertainty trade-offs

between hydrogeology and physiology. However, the present methodology framework allows one

to obtain a priori and important information through the use of the analytical expressions derived.

Notation

Symbols and their respective units:

a: Initial location of the source [L]

ao: Point source location [L]

AT : Average time [t]

ADDM : Average daily dose [M/(M t)]

ADDG: Average daily dose for groundwater intake [M/(M t)]

ADDH : Average daily dose for inhalation [M/(M t)]

ADDD: Average daily dose for dermal sorption [M/(M t)]

A, B: Travel time variables [t]
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Cf : Flux-averaged concentration [M/L3]

CPFM : Cancer potency factor [(M t)/M]

CY : Spatial covariance of the log-conductivity

CVR, CV o
R: Coefficient of variation for risk [-]

ED: Exposure duration [t]

EF : Exposure frequency [t/t]

EP , EP, O: Joint entropy for physiological parameters

EH , EH, O: Entropy for hydrogeological parameters [-]

f : Generic function

fC(cf ): The PDF for Cf

fR(r), fo
R(r): Risk PDF [-]

fP (θP ): PDF for risk related parameter

fH(θH): PDF for hydrogeological parameters

fmo: Metabolized fraction of contaminant ingested [-]

fmr: Metabolized fraction of contaminant from dermal contact [-]

FR(r): Risk CDF [-]

F c
R(r): Risk CDF conditioned on measurements [-]

g1(τ): Travel time PDF [1/t]

g2(τ, τ ′): Travel time joint PDF [(1/t)2]

Gτ (τ): Travel time CDF [-]

H(·): Heaviside function

h: Generic function [1/t]
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I: Number of individuals in the exposed population [-]

IY : Integral scale of the aquifer [L]

IR/BW : Ingestion rate per body weight [L3/(t M)]

Ki: Hydraulic conductivity at a specific location xi [L/t]

K(x): Hydraulic conductivity at a generic location x [L/t]

L: Euclidean distance between the contaminant source and the control plane [L]

{m}: Set of measurements

{m1} Data unconditioned on K(x) measurements

{m2}: Data conditioned on a sparse grid of K(x) measurements

{m3}: Data conditioned on a dense grid of K(x) measurements

Mo: Mass injected [M]

ṁ: Mass release function [M t−1L−3]

mY mean of the log conductivity [-]

N : Number of locations sampled [-]

Pi: Behavioral and exposure parameters for the ith individual

Q(x, t): Total solute mass flux [M/t]

〈Q〉: Expected value of solute flux [M/t]

〈Q2〉: Second moment of solute flux [(M/t)2]

Qw(x): Water flux at the control plane [L3/t]

Rf : Retardation coefficient [-]

r: Increased cancer risk or simply risk [-]

〈R〉: Expected value of increased cancer risk [-]
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〈R2〉: Second moment of increased cancer risk [-]

to: Time source injection begins [t]

To: Period of injection of contaminant [t]

Ti: Time exposure begins [t]

U , 〈V1〉: Mean velocity in the x1 direction [L/t]

u′: Velocity fluctuation in the x1 direction [L/t]

V: Velocity vector [L/t]

V1, V2, V3: Components of the velocity vector [L/t]

Y : Logarithm of the hydraulic conductivity

X11(t): Particle displacement covariance [L2]

x: Cartesian coordinate system [L]

α: Ratio between entropies [-]

β: Risk related parameter [L3/M]

δ: Dirac delta

∆CVR: Relative difference for the risk coefficient of variation [-]

∆EH , ∆EP : Entropy difference [-]

γ: Reaction release function [t−1]

µ∗R: Mean of the random variable’s logarithm [-]

η: Ratio between L and IY [-]

Ω: Finite source volume [L3]

φ: Porosity [-]

σfmo: Standard deviation of the fmo [-]
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σIRBW : Standard deviation of the IR/BW [L3/(t M)]

σ2
Q: Variance of solute flux [(M/t)2]

σo
Y : Non-perturbed log-conductivity standard deviation

σ2
Y : variance of the log conductivity [-]

σ2
R: Variance of increased cancer risk [-]

σ∗R: Standard deviation of the random variable’s logarithm [-]

τ : Travel time [t]

θH : Hydrogeological parameter vector

θP : Risk related parameter vector

χ: Number of dimensions of the contaminant source [-]
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Chapter 3

The Concept of Comparative

Information Yield Curves and Their

Application to Risk-Based Site

Characterization

3.1 Introduction

As described in the previous chapter, obtaining accurate predictions of potential human

health risks from groundwater contamination is a challenge. The main difficulty lies in the fact that

many of the factors that constitute risk are uncertain. Amongst these, we highlight two classes of

parameters: (i) hydrogeological and (ii) physiological. Hydrogeological parameters are necessary
2This chapter is based on a published article in Water Resources Research, 2009. (In Press,

doi:10.1029/2008WR007324)
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to estimate fate and transport of pollutants in the subsurface as well as the level of contamination to

which humans potentially will be exposed. Because of aquifer heterogeneity [Dagan, 1984, 1987;

Rubin and Dagan, 1992; Rubin, 2003], the input values for hydrogeological parameters between

measurement locations can influence the flow field and, consequently, the concentration values cal-

culated by the model. Since we lack the full knowledge of the subsurface structure, we must account

its uncertainty to fill the spatial gap not covered by measurements [Beckie, 1996; Rubin, 2003].

Physiological parameters are needed in order to link contaminant concentration to human

health risk. Uncertainty within this component comes from dose-response studies [McKone and

Bogen, 1991; Chiu et al., 2007]. The dose-response relationship is often obtained by performing

laboratory experiments on animals and later extrapolating the results to humans. Thus, because of

this extrapolation, at low doses these dose-response models are uncertain. Besides the physiological

component, human behavioral characteristics, such as ingestion rate of tap water, also add uncer-

tainty and variability in the risk related parameters [Burmaster and Wilson, 1996; Maxwell et al.,

1998; Daniels et al., 2000].

Understanding the impact from each of these factors in human health risk provides a ratio-

nal guidance towards answering questions such as: What is the expected risk uncertainty reduction

if additional measurements of hydraulic conductivity are sampled? Given the uncertainty present in

physiology, when is a detailed site characterization campaign necessary?

Several studies have investigated risk due to groundwater contamination in a probabilistic

framework. For example, risk-cost-benefit analysis can be found in Massman and Freeze [1987],

Freeze et al. [1990] and James and Gorelick [1994]. They studied the trade-offs between financial

costs and risk. Uncertainty is accounted within the hydrogeological parameters within a Bayesian
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framework. In these previous studies, costs are associated with probability of failure (contamination

above some regulatory threshold value occurring) and the worth of data was addressed. A few other

articles investigated the dependence of risk to hydrogeological and physiological parameters under

different types of contaminants (i.e. radionuclide or organic) [Bogen and Spear, 1987; Andricevic

et al., 1994; Andricevic and Cvetkovic, 1996; Maxwell et al., 1998; Maxwell and Kastenberg, 1999].

Maxwell et al. [1999] addressed how increased sampling of hydraulic conductivities affects reduc-

tion of uncertainty in human health risk. Benekos et al. [2007] extended the studies performed by

Maxwell and Kastenberg [1999] for multi-species transport.

To investigate the relative impact of uncertainty reduction in the hydrogeological com-

ponent and in the physiological component on the final risk estimate, de Barros and Rubin [2008]

developed a metric, based on the concept of information entropy that allows one to quantify the

relative impact of information gathered on human health risk (see details in Chapter 2). This metric

is used within a graphical tool that compares alternative strategies for risk uncertainty reduction.

However, the role of flow and transport scales in determining characterization needs in

a risk-driven approach has not received much attention. There is still need for further investiga-

tion when counter-balancing the effects of hydrogeological site characterization with physiological

uncertainty as a function of flow and transport scales. Hydraulic properties can vary on different

scales and the value of hydrogeological information is dependent on these physical scales. Phys-

ical scales include the characteristic lengths that characterize subsurface heterogeneity, flow and

transport. Such scales, as shown in Figure 3.1, are source size relative to the correlation length

of aquifer heterogeneity, size and configuration of the exposure endpoint (screened well or control

plane), pore-scale and capture zones induced by the action of pumping.
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Figure 3.1: Illustration of the various length scales that define the flow, transport and consequently
risk. Width of the contaminant source (`S), capture zone width (Wcz) and the representative geo-
statistical correlation lengths (λx,λy).

Furthermore, little attention has been given to the implication of different risk models in

defining characterization needs and this issue will also be addressed. In this chapter, we employ

the concepts presented in de Barros and Rubin [2008] to investigate the significance of various

length scales that define the risk problem and their impact on hydrogeological site characterization.

We extend the ideas from de Barros and Rubin [2008] (also presented in Chapter 2) to introduce

the concept of comparative information yield curves in order to quantify the relative impact of

uncertainty reduction of flow and health parameters in risk. The theoretical aspects of this concept

are presented along with its implications on site characterization applications.

This chapter addresses the following fundamental question: Are there flow and transport

characteristics in which uncertainty reduction in human health risk will benefit more from uncer-

tainty reduction from human physiology or hydrogeology? We wish to investigate the role of these

physical scales (e.g. plume-size, correlation lengths, etc) in determining characterization needs.

The above question is relevant since assessing the value of data acquisition is an issue of concern in
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real life applications. Questions concerning the expansion of existing, and sometimes even substan-

tial, measurement networks, or issues regarding selecting between alternative targets for additional

investment are of primary concern. Such efforts may not always be justified, because they can po-

tentially yield only marginal improvement in the predictive capability. Due to an ever increasing

demand on site characterization, many sampling techniques are available that vary in resolutions and

offer direct or indirect information on the parameters relevant for modeling. Thus having a ratio-

nal guide to manage all these alternatives becomes relevant since we live in a resource constrained

world.

3.2 Mathematical Statement of the Problem

Given the uncertainty present in all components of human health risk assessment, it is

rational to use a probabilistic framework to quantify risk due to groundwater contamination. Our

objective is to obtain the ensemble distributions of human health risk for the exposed population. As

in the previous chapter, we will consider r to represent the increased lifetime cancer risk. This is not

a limitation and non-cancer risks can also be used within the framework. Here, FR(r) denotes the

corresponding risk cumulative distribution function (CDF). FR(r) is evaluated for a given vector of

hydrogeological parameters, θH , field site measurements, {m}, and for a given matrix containing

the population’s health-related parameters ΘP .

The vector θH contains the parameters that characterize the Space Random Function

(SRF) of the hydrogeological variables [Dagan, 1984, 1987; Rubin and Dagan, 1992; Rubin, 2003]

such as mean value and variance of the logconductivity, integral scales as well as other flow and

transport related parameters such as porosity, source concentration, pumping rates and dispersion
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coefficients. These parameters have a physical and chemical nature and can be deterministic or

stochastic.

The exposed population with I individuals is characterized by the matrix ΘP = {θP, 1,θP, 2,

θP, 3,...,θP, I} where θP, i is the vector of behavioral and physiological characteristics of the ith in-

dividual. Each θP, i, where i = 1,..,I , varies from individual to individual. The typical parameters

present in θP,i are, for example, the ingestion rate per body weight, exposure duration and cancer

potency factors as well as their statistical moments if uncertainty exists. Statistical distributions for

these parameters for different pathways are found in the literature [Maxwell et al., 1998; Binkowitz

and Wartenberg, 2001; Portier et al., 2007]. The conditional risk CDF for the ith individual of the

exposed population is given as follows:

FR(r|θH , θP, i, {m}) = Prob[R < r] (3.1)

With equation (3.1), risk estimates can be obtained given an appropriate risk model. Most impor-

tant, for a given regulatory acceptable risk value, for example r = 10−6, equation (3.1) provides the

probability of risk reliability or exceedance. This may be accomplished by calculating the comple-

mentary cumulative distribution function, CCDF, Prob[R > r]=1− FR.

3.3 The Use of Entropy to Quantify the Impact of Information on Risk

In the recent work of de Barros and Rubin [2008], information entropy was used to de-

velop a metric that relates the amount of information in hydrogeology to the amount of information

in physiology. This metric, denoted in the present work by α , was used to investigate uncertainty

trade-offs between hydrogeological parameters (such as hydraulic conductivity K) and physiolog-
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ical parameters (cancer potency factor). Before explaining the form of and how it functions, some

definitions are required. We first introduce the concept of information yield curves. Afterwards, we

extend the theoretical aspects towards applications to site characterization.

3.3.1 The Concept of Information Yield Curves

Following the work of de Barros and Rubin [2008], let us define EH as the information

entropy for hydrogeological parameters (including transport variables such as chemical parameters)

and EP as the entropy for physiological and behavioral parameters. The entropies are defined as

[Christakos, 1992]:

EH = −
∫ ∞

−∞
fH(θH |IH , {ma}) ln[fH(θH |IH , {ma})]dθH

EP = −
∫ ∞

−∞
fP (θP |IP , {sa}) ln[fP (θP |IP , {sa})]dθP (3.2)

where fH and fP are the continuous probability density functions (PDF) for the vector of hydro-

geological parameters θH and for the health-related parameters θP respectively. The integration

in equation (3.2) is performed over the entire parameter space. For the sake of notation, we have

omitted the subscript i from θP as defined in the previous section. Equation (3.2) represents the

total amount of information from each component at an initial stage of knowledge. These entropies

can be evaluated with hydrogeological prior knowledge IH , with a small amount of available hy-

draulic data {ma}, physiological prior information IP and finally, available health-related sample

data {sa}. From the distributions necessary to estimate EH and EP we can evaluate a correspond-

ing FR, defined by equation (3.1), and consequently its statistical moments. As more information

becomes available, either from flow or health physics, EH and EP would decrease since the uncer-
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tainty in both fH and fP is reducible with additional data collection.

Being able to estimate the values of EH and EP with no a priori information allows one

to investigate relative value of information in human health risk. This is necessary since decision-

makers need to decide where to invest resources towards risk uncertainty reduction. At this early

stage of the risk analysis, only a small amount of information is available through prior knowledge

or initial data. In order to decide whether or not more data is needed, one must evaluate its impact

in the human health risk distribution. We now denote the unknown (to be sampled) hydrogeological

measurements by {mna} and the unknown health-related by {sna}. The following equations are

the entropies averaged over all possible measurement values:

EH, O =
〈
−

∫ ∞

−∞
f̂H(θH |IH , {ma}, {mna}) ln[f̂H(θH |IH , {ma}, {mna})]dθH

〉
;

EP, O =
〈
−

∫ ∞

−∞
f̂P (θP |IP , {sa}, {sna}) ln[f̂P (θP |IP , {sa}, {sna})]dθP

〉
, (3.3)

with EH, O and EP, O being the expected entropy values over all possible measurements values that

{mna} and {sna} can take. They are evaluated with the inferred PDF f̂H and f̂P such that EH, O ≤

EH and EP, O ≤ EP , see equation (3.2). A general numerical procedure that can be used to obtain

the entropies in equation (3.3) is as follows:

1. Generate a possible realization of No measurements for {mna} and So measurements for

{sna} from prior knowledge. This requires the assumption that the models from which the

measurements are generated are known. For example, a Gaussian or Exponential geostatisti-

cal model and a dose-response model;

2. Using the data drawn from this realization, the parameter’s PDF, f̂H and f̂P , are inferred.

These parameters can be the mean or variance of the logconductivity data and integral scales
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or cancer potency factor. As the number of measurements increases, these PDF become more

informative. Details concerning the PDF estimation procedure is given in Appendix B;

3. With f̂H and f̂P , the conditional entropies EH, 1 and EP, 1 can be calculated. Here, the

subscript 1 corresponds to the first realization of the data sets {mna} and {sna}. These

entropies are conditional on the generated data and a known model;

4. Repeat steps 1-3 for several realizations of the data {mna} and {sna} such that two vectors

with elements EH, j and EP, j are obtained. Here the subscript j=1, ...,JMAX corresponds to

the realizations. JMAX is the maximum number to realizations;

5. With the entropies EH, j and EP, j , given j=1, ...,JMAX , the values for the ensembles aver-

ages, EH, O and EP, O, are obtained;

6. Repeat steps 1-5 to evaluate the impact of an additional amount of data (N≥No) in {mna}

and {sna} (S≥So).

The assumption in this outlined procedure is that some information about the site needs

to be known. This includes the prior parameter PDF and the use of expert opinions or information

borrowed from geologically similar formations (see Appendix B). If model uncertainty exists (for

example: the geostatistical model of the underlying geological formation or the shape of dose re-

sponse model), the current framework can incorporate Bayesian Model Averaging [Hoeting et al.,

1999; Neuman, 2003]. This is done by assigning different weights to each entropy ensemble evalu-

ated for a given model and then averaging them. Mathematically this is equivalent to EH, O =
∑

ωi

× (EH, O|Mi), where ωi is the ith weight for the corresponding ith model denoted by Mi). The

term (EH, O|Mi) is the ensemble averaged entropy given a geostatistical model. In many situations,
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the conceptual model for flow and transport could change as more data is collected. For instance,

extra hydrogeological data may give evidence to the presence of a leaking aquitard or strong vertical

pressure gradients, which would cause revisions of the initial conceptual model. Even if there is still

uncertainty within the conceptual model, this additional data helps in updating the weights, ωi, in

the Bayesian Model Averaging procedure. The current framework allows for this model updating

process as more data is collected and obtain new predictions.

For increasing number, N , of measurements in both {mna} and {sna}, the average en-

tropy estimates decrease as shown in Figure 3.2. The vertical axis represents the difference between

the entropy evaluated with increasing N measurements and the initial entropy calculated with No

measurements (with N≥No).

Figure 3.2: Entropy averaged over all possible measurement values generated by a geostatistical
model.EH, O(N) and EH, O(No) are the entropies evaluated with N and No measurements respec-
tively with N≥No. If the model of the underlying formation is unknown, the methodology can
account for the Bayesian Model Averaging (BMA). Here M1 and M2 corresponds the Gaussian and
Exponential model respectively with ω1 = ω2= 0.5.
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This plot was obtained for the hydrogeological parameters by making use of steps given

above together with Appendix B. A similar plot can be done with EP, O by averaging over all pos-

sible, non-available, physiological and behavioral data. Figure 3.2 also shows how different geosta-

tistical models, Exponential and Gaussian, can lead to different entropy estimates. It also illustrates

the Bayesian Model Averaging result if the geostatistical model is uncertain. Equal weights were

assigned to each model for this demonstration. Now that we have presented the necessary defini-

tions, we can write the following entropy differences for both hydrogeological and physiological

parameters:

∆EH = EH − EH, O

∆EP = EH −EP, O. (3.4)

Equation (3.4) define the differences between the expected entropies, EH, O and EP, O,

given in equation (3.3) and the current entropy stages denoted by EH and EP . By reducing uncer-

tainty from both physiology and hydrogeology, ∆EH and ∆EP tend to values closer to zero. The

metric that relates uncertainties from each risk component is given below (see Chapter 2):

α =
10∆EH

10∆EP
, (3.5)

where ∆EH and ∆EP are defined in equation (3.4). As explained in de Barros and Rubin [2008],

loss of information in θH means α increasing to values greater than one. This is obtained by

increasing ∆EH while keeping ∆EP equal to zero. If uncertainty increases in θP , then α values

are bounded between zero and one (keeping ∆EH fixed and equal to zero). When α equals to one,

we have ∆EH = ∆EP = 0. The point α =1 is considered the base case from which the relative

contribution of information will be quantified. Figure 3.3 illustrates the α concept.



58

Figure 3.3: Graphical explanation of the α concept. At α equal to one, we have reached entropies
EP, O and EH, O. For each value of α, a corresponding risk variance or coefficient of variation is
obtained. The plot of α versus the risk coefficient of variation is denoted here as the Comparative
Information Yield Curves.

With equation (3.5) we can obtain a series of values to the right and left of α =1 and

evaluate, through simulations, their corresponding uncertainty levels in human health risk. These

corresponding uncertainty levels can be represented by risk variance, 95th confidence intervals, or

the risk coefficient of variation (CVR = σR/µR). For the current work, we will adopt the change of

the coefficient of variation in the following way:

∆CVR =
CVR − CV o

R

CVR
, (3.6)

where CV o
R corresponds to risk evaluated with the entropies EP, O and EH, O. We will obtain a

series of these α versus ∆CVR curves for several different physical scenarios to investigate un-

certainty trade-offs. These graphs are denoted here as the Comparative Information Yield Curves.

Summarizing, the value of α denotes a change in entropy values. It is a metric for comparing two

stages of information. A financial cost value can be obtained by relating α to a given sampling
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strategy. For this particular α value, a corresponding uncertainty reduction will occur. We repre-

sented this uncertainty reduction by ∆CVR however, other representative measures besides ∆CVR

can also be evaluated from the Monte Carlo simulations (such as 95th confidence intervals).

3.3.2 Application

Since EP, O and EH, O are speculative projections, in the sense that it needs to be defined

in equation (3.4) and (3.5), one may want additional formulations of the approach described previ-

ously. An alternative application of the entropy concept for investigating uncertainty trade-offs in

human health risk is obtained by changing the definition of EP, O and EH, O, given in equation (3.3)

and (3.4), such that we have EP, O ≥ EP and EH, O ≥ EH . This means that the values for EH, O

and EP, O correspond to the current state of information and are denoted as base case entropies.

Note that this new inequality differs from the definition given in equation (3.4). This would bypass

the need to calculate the entropy ensemble averages, EP, O and EH, O, as given in equation (3.3) and

(3.4). Based on a set of initial data or prior information, an estimate of EP, O and EH, O is obtained

such that ∆EP = ∆EH = 0 corresponds to the initial uncertain case together with a corresponding

coefficient of variation for risk. Now, with this alternative approach, EH, O and EP, O represents the

available amount of information at the early stage of characterization. As more data are collected,

new estimates of EH and EP are obtained and their values will be lower than the corresponding

EH, O and EP, O. As shown in the following paragraph and in Figure 3.4, a graphical approach

could be used not only to investigate the value of information in uncertainty reduction in human

health risk as more data is acquired but also to compare different sampling strategies by estimating

their respective value of information using the 6-step procedure described earlier in Section 3.3.1.

Figure 3.4 shows the application of this alternative definition (EH ≤ EH, O and EP ≤
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Figure 3.4: Illustration of the second alternative for the Comparative Information Yield Curves
to investigate risk uncertainty reduction strategies between the hydrogeological and physiological
component. Here, plots (A-B) show one sampling strategy while plots (C-D) illustrate another
different sampling strategy. CVR is the coefficient of variation of risk while CV ∗

R is a stopping
criteria associated with an environmental regulation.

EP, O) and how one can reduce the uncertainty in risk by using different sampling strategies. Plots

(A) and (B) in Figure 3.4 illustrates one sampling strategy: Reducing uncertainty from hydroge-

ology (segment I), then physiology (segment II) followed by hydrogeology again (segment III). A

different strategy is shown in Figure 3.4, plots (C) and (D), by reducing uncertainty from hydro-

geology (segment I), then physiology (segment II) and then physiology again (segment III). The

sampling stops when a regulatory target is reached. Figure 3.4 gives a step-wise approach allowing

one to direct efforts to obtain the best information yield.

As mentioned before, the advantage of this alternative is that it avoids the need to pre-

specify EH, O and EP, O values as defined in equations (3.3) and (3.4) thus allowing one to construct



61

the plots such as the one given in Figure 3.4. Also, the information yield curves based on this

alternative definition offers a step-wise approach illustrated in Figure 4 that allows one to revise the

conceptual model as more information becomes available. At each step, efforts can be allocated

where the sampling strategy offers the best yield. The usefulness of this second approach will

be illustrated in the end of this chapter. Both alternatives for the use of entropy in risk will be

discussed. However, it is important to state that the second alternative allows one to select where to

invest resources in a more practical manner.

3.4 Illustration Case

Consider a bounded 2D flow in an aquifer with spatially variable and isotropic hydraulic

conductivity K(x) and Y = ln K. Due to incomplete information of the system, K is characterized

by its Space Random Function (SRF) and is considered here as statistically stationary. Its covari-

ance structure model is assumed to be exponential and isotropic with σ2
Y being the variance of Y

and λ the correlation length of heterogeneity. A contaminant plume, considered here as a collection

of particles, is released within a rectangular source domain with transversal length `S . Each particle

represents a mass of contaminant and travels along a streamline of the flow field and are used to

determine spatial contaminant distributions that may cause adverse health effects. We simulate the

case of a hypothetical PCE contamination problem. The prescribed pressure head along the longitu-

dinal direction are used as boundary conditions. Zero flux boundary conditions are assumed along

the transversal direction. A drinking water well with pumping rate Q represents the environmentally

sensitive location. The governing flow and transport equations are given in Appendix C.

Flow and transport is solved numerically using a Monte Carlo procedure. At each real-
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ization, the flow and transport problem is solved for a specific image of the aquifer’s properties,

generated using the Turning Bands Method [Tompson et al., 1989; Rubin, 2003]. Specific informa-

tion concerning the numerical codes used in this work can be found in Ashby and Falgout [1996];

Maxwell and Kastenberg [1999]; Jones and Woodward [2001]; Kollet and Maxwell [2006]. Tech-

nical details concerning the numerical implementation are summarized in Appendix C. The frame-

work presented can be used with analytical and numerical methods. Our choice for numerical im-

plementation of flow and transport is for illustration and not to depend on simplifying assumptions.

There exists a large amount of work published in the literature with analytical solutions that could

be used to build the Comparative Information Yield Curves and many are summarized in Rubin

[2003]. These same analytical solutions were also used to investigate human health risk [Andricevic

et al., 1994; Andricevic and Cvetkovic, 1996] and served as the basis of the work of de Barros and

Rubin [2008] where the Comparative Information Yield Curves were used to evaluate uncertainty

trade-offs. In the following, the exposure pathways considered in this work as well as the input data

used in the simulations are described.

3.4.1 Exposure Pathways and Risk Formulation

We consider risk due to groundwater ingestion and inhalation for illustration of the method-

ology. These two pathways were shown to have a stronger impact in human health risk [Maxwell

et al., 1998]. Due to the nature and complexity of cancer mechanisms, cancer risk models are

generally derived from dose-response curves. These curves are based on toxicological studies and

are determined experimentally by observing adverse effects in animals for increasing applied doses

(or concentrations) [Fjeld et al., 2007]. The dose-response curve results are then extrapolated to

humans. A common challenge is determining what shape the dose-response relationship in the ex-
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trapolated zone (where uncertainty is highest), also known as the low-dose zone, should take. For

low-doses, risk models can assume both linear and non-linear forms [USEPA, 2005; Fjeld et al.,

2007]. Figure 3.5 shows linear and non-linear models for the dose-response curves. In the present

Figure 3.5: Example of dose-response relationship at the as a function of m shown in equation (7).
The solid-dotted curve represents the linear model used by the [USEPA, 1989] with m=1

formulation we will treat the risk model in the following functional form:

r = CPFG × [LADDG]m + CPFH × [LADDH ]m, (3.7)

where CPFG and CPFH are the cancer potency factors for the ingestion and inhalation pathway

respectively. These are also known as the cancer slope factors. The parameter m determines the

non-linearity of the model. The value for m comes from fitting the model to toxicological data

available from dose-response experiments. LADDG and LADDH are the average daily doses

for tap water ingestion and inhalation during shower. The average daily dose is a function of the
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concentration (C) and behavioral and exposure parameters.

LADDG = C ×
(

IR

BW

)
× EF × ED

AT

LADDH = ACS × ETS ×
(

HR

BW

)
× EF ×ED

AT
. (3.8)

These behavioral and exposure parameters are the well-known EPA risk variables such as ingestion

rate per body weight (IR/BW ), exposure duration (ED), average lifetime (AT ) and exposure

frequency (EF ), inhalation rate per body weight (HR/BW ) and shower exposure time (ETS)

[USEPA, 1989, 2001]. The indoor air concentration is denoted by ACS = C(WS × TES)/ V RS

with WS being the tap water use rate, TES the transfer efficiency from tap water to air and V RS is

the air exchange rate [USEPA, 1989, 2001; Maxwell et al., 1998]. For our work, we will use the peak

concentrations to evaluate risk. Other works studied the effects of averaging concentration over the

exposure duration [Maxwell and Kastenberg, 1999; Hassan et al., 2001; Maxwell et al., 2008] and

the implications of using average versus peak concentration in hydrogeological site characterization

[de Barros and Rubin, 2008]. To obtain the classic EPA linear low-dose model, we set m = 1

[USEPA, 1989, 2001].

3.4.2 Input Data used in the Case Study

Table 3.1 summarizes the deterministic data used for input in the simulations. The domain

with longitudinal dimension L and width W (size: 50λ × 32λ ) is discretized into a regular rect-

angular grid. Each grid block has dimensions ∆x1=∆x2= λ/5 [Rubin et al., 1999]. As mentioned

previously, flow and transport are solved within the Monte Carlo approach and 300 realizations were

performed.

To answer the research questions posed in the introduction, we select an aquifer with
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Flow, transport and risk parameters

Q 5 and 50 m3/d IR/BW 0.033 L/(d-kg)

Pe = λ/αL 100 and ∞ AT 70 y

λ 100 m HR/BW 0.39 m3/(d-kg)

ne 0.3 [-] WS 480 1/h

Rf 1 [-] EF 350 d/y

L 3000 m ED 30 y

W 2500 m TES 0.5 [-]

xw (2500 m, 1000 m) V RS 12 mg/m3

ζ = `S/λ 0.5 and 6 [-] ETS 0.13 h/d

Table 3.1: Data used in flow, transport and health risk models. Behavioral parameters are repre-
sentative of the 50th fractile of variability. Here, Q is the pumping rate, Pe is the Peclet number,
λ is the heterogeneity correlation length, ne is the effective porosity, Rf is the retardation factor,
L is the longitudinal distance, W is the width, xw is the location of the pumping well and ζ is the
dimensionless source width. The other risk-related parameters are defined in Section 3.4.1.

parameters summarized in Table 3.1. This aquifer, denoted as the baseline, was selected from

several realizations simulated with geometric mean KG = 1 m/d and σ2
Y = 1 (see Table 2). From this

baseline aquifer, we sampled values of hydraulic conductivity in fixed intervals of 8λ, 4λ and 2λ in a

subdomain (18λ× 16λ ) horizontally centered with the contaminant source and the environmentally

sensitive target. We denote by {m1} the measurement density associated with the sampling interval

8λ, {m2} with 4λ and finally {m3} with 2λ.

For the present investigations, we assume that KG and σ2
Y are uncertain parameters and

its statistical distributions can be inferred as shown in Appendix B. Both KG and σ2
Y vary between

conditional simulations according to the three mentioned sampling densities shown in Table 3.2.
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Hence, fH in equation (3.2) corresponds to σ2
Y and KG. If a distribution is assumed, say lognormal,

the statistical moments of σ2
Y and KG can be estimated by using the Maximum Likelihood Function

[Rubin, 2003] (see Appendix D). Table 3.2 summarizes the estimated parameters from the sampled

data set used in flow simulation.

Geostatistical Parameters Conditional on Hydraulic Data

Sampling Strategy KG[m/d] σ2
Y N∗ Var[σ2

Y ] Var[KG]

”Base Aquifer” 1.0 1.0 NA NA NA

{m1} : 8λ 1.5 1.2 9 0.295 1.06

{m2} : 4λ 0.9 0.6 25 0.035 0.16

{m3} : 2λ 0.76 0.71 81 0.012 0.02

Table 3.2: Hydrogeological data used in the conditional simulations. Here N∗ denotes the number
of measurements sampled and NA means Non-Applicable.

From the physiological side, we assume that cancer potency factors are the uncertain

parameter and uniformly distributed [McKone and Bogen, 1991]. Thus, fP in equation (3.2), repre-

sents the uniform PDF for CPFG and CPFH . Table 3.3 summarizes the upper and lower bounds

used in the following simulations. The coefficient of variation (CV ) is also included in Table 3.3.

We evaluate risk for different levels of parametric uncertainty in CPFG and CPFH . Due to the lack

of data, we assume, without loss of generality, that the hydrogeological and physiological parame-

ters are independent. This assumption is not a limitation in this work. If correlations between both

components are known (for example, concentration data and the cancer potency factors), then joint

entropies can be evaluated with the corresponding joint PDF between hydrogeological and phys-
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iological parameters [Christakos, 1992]. For the current work, EH, O is evaluated with estimated

uncertain parameters from denser measurement grid {m3} given in Table 3.2 and EP, O is evaluated

with the statistical distributions in Case 4 from Table 3.3.

CPFG

CASE Minimum Maximum CV

1 0.001 0.025 0.53

2 0.005 0.025 0.38

3 0.01 0.025 0.24

4 0.015 0.025 0.14

CPFH

CASE Minimum Maximum CV

1 0.0012 0.002 0.14

2 0.0015 0.002 0.08

3 0.0017 0.002 0.05

4 0.0017 0.0019 0.03

Table 3.3: Uniform distribution parameters for CPFG and CPFH along with the coefficient of
variation (CV ). Units of [(kg-d)/mg]m , see equation (3.7).

3.5 Results and Discussion

In this section, results are presented based on the data set given previously. We first ad-

dress the interplay between plume-scale, capture zones and pore-scale dispersion. The differences

between using a screened well versus a control plane to evaluate the concentration in defining char-

acterization needs within a risk driven approach is also addressed. Finally, we illustrate the how the

value of information depends on the risk model used (i.e. linear versus non-linear model). Discus-

sion and analysis are based on the concept of Comparative Information Yield Curves described in

Section 3.3.
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3.5.1 On Plume-Scale, Capture Zones and Pore-Scale

Here, we investigate the dependence of risk uncertainty reduction on plume-size by mak-

ing use of the entropy concept defined in Section 3.3. Our goal is to evaluate the risk CDF con-

ditioned on the contaminant source size and measurements, FR(r|ζ, {mi}) where ζ is the ratio

between the source width (`S) and the heterogeneity correlation length (λ) (see Figure 3.1). Results

are shown for a small (ζ = 0.5) and large (ζ = 6.0) contaminant source given measurements densi-

ties {m1}, {m2} and {m3}. The Comparative Information Yield Curves in Figure 3.6 shows that

the effect of conditioning in reduction of risk uncertainty is much more beneficial for small source

when conditioning on hydrogeological data. However, gaining information on the physiology side

has much more effect in risk uncertainty reduction when the source is large (ζ = 6.0).
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Figure 3.6: Illustration of the Comparative Information Yield Curves concept and the relative con-
tribution of information for Q = 5 m3/d, Pe→∞ given source sizes ζ = 0.5 and ζ = 6.0. Here h1 >
h2 and h3 > h4 for a fixed change in log α. Risk evaluated with a linear model provided in equation
(3.7) with m = 1.
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For a given change in α at points α > 1, we observe that the corresponding change in

∆CVR is greater for the smaller plume case (ζ = 0.5) than for the larger plume (ζ = 6.0). This

means that hydrogeological data acquisition has a stronger impact on risk uncertainty for smaller

plumes by comparing h3 and h4 shown in Figure 3.6 (h3 > h4). One can also fix a change in ∆CVR

and compare the slopes of the curves and the corresponding changes in log to the left and right of α

= 1. A similar effect was observed in Maxwell et al. [1999] by comparing conditional risk CDF for

a 3D flow and transport test case. We will explore in more detail the physical mechanisms behind

this result.

This effect can be explained as follows: As the scale of the solute body increases, the

plume approaches the ergodic state. This means that the plume’s centroid becomes less affected

by small-scale fluctuations captured by hydraulic conductivity measurements [Rubin et al., 1999;

Rubin, 2003]. On the contrary, for small contaminant sources (ζ = 0.5), additional data contributes

to reducing uncertainty about the location of the contaminant plume as well as the small-scale

fluctuations of the streamlines. For example, a set of additional measurements may inform whether

or not the contaminant plume will bypass the drinking water well.

The opposite effect is noted for α < 1. Here we observe that for a given change in α, the

larger ∆CVR corresponds to the larger plume (h1 > h2). For larger plumes, uncertainty reduction

from the physiological side causes a larger uncertainty reduction in the human health risk CDF when

compared to the smaller plume case. This is quite intuitive since there is no or little uncertainty

whether a larger plume will reach the environmental target. The only uncertainty is how severe the

impact would be on the exposed population. This depends more on the population’s physiological

characteristics than on flow and transport processes.



70

-2 -1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

 log 

C
V R

 Q = 50 m3/d, = 0.5
 Q = 50 m3/d, = 6.0

Loss of information 
in hydrogeology

Loss of information 
in physiology

Figure 3.7: Illustration of the Comparative Information Yield Curves concept and the relative con-
tribution of information for Q = 50 m3/d, Pe → ∞ given source sizes ζ = 0.5 and ζ = 6.0. Risk
evaluated with a linear model provided in equation (3.7), m=1.

Now, we wish to extend this result to illustrate its dependence on the scale of the capture

zone induced by aquifer pumping (see Figure 3.7). Juxtaposition of Figure 3.6 and Figure 3.7 shows

that by increasing the pumping rate Q, the benefit of additional K sampling vanishes, regardless of

source dimensions. The probability that the plume will reach the drinking well increases for larger

Q, thus the additional data used to increase the accuracy of the plume’s location has a smaller

impact and becomes less relevant. On the other hand, improved physiological characterization is

more beneficial for the bigger plume than the smaller one (similar to the conclusions drawn from

Figure 3.6) because in the absence of uncertainty on whether the plume will be captured by the well,

the only impact on risk uncertainty reduction is from the physiological side.

The effect of pore-scale dispersion on characterization needs is demonstrated in Figure
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3.8. The Peclet number is defined as Pe = λ/αL with αL being the longitudinal dispersivity. It is

varied in this case through different αL values. Figure 3.8 shows that at small Peclet numbers, the

benefits of K sampling diminish independently of the plume’s dimension. Two cases for compari-

son are shown: An infinite Peclet scenario (Pe→∞) and a finite Peclet scenario (Pe = 100). Larger

pore-scale dispersion smooths out details captured by hydrogeological site characterization for both

large and small plumes. The role of a finite Peclet number in heterogeneous flows is to increase

the rate of concentration variance destruction thus smoothing out the concentration field [Fiorotto

and Caroni, 2002; Rubin, 2003; Caroni and Fiorotto, 2005]. This is observed in Figure 3.8 for α

> 1. By removing pore-scale dispersion, the effect of plume size starts to play a role in defining

characterization efforts as shown in Figure 3.8 for points α > 1. For large Pe, the plume centroid is

influenced more by heterogeneity and hydraulic data contributes to risk uncertainty reduction. Fur-

thermore, if the plume is small and transport is dominated by advective processes, pore-scale effects

as well as macro-dispersion plays less of a role, thus increasing the importance of hydrogeological

data acquisition. The information yield curve for this case (ζ = 0.5 and Pe→∞) is represented in

Figure 3.8 for points α > 1.

For α < 1, we have the same results as shown in Figures 3.6 and 3.7. Note that, for finite

Peclet, the curves corresponding to ζ = 0.5 and ζ = 6.0 are grouped closer compared to the previous

figures and this is because dispersion tends to dilute the concentration field. On the contrary, by

observing the slopes of the curves depicted in Figure 3.7, larger Peclet numbers imply larger vari-

ance in the concentration leading to higher probability for having larger concentration values. In

the case of high Peclet, plume-scale makes a large difference in determining whether or not physio-

logical uncertainty is important. For instance, Figure 3.8 shows that the physiological side becomes



72

-3 -2 -1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 

 

log 

C
V R

 = 0.5, Pe     Infinity 

 = 6.0, Pe     Infinity
 = 0.5, Pe = 100
 = 6.0, Pe = 100

Q = 5 m3/d

Figure 3.8: The influence of pore-scale dispersion in the analysis with Pe = λ/αL. Results obtained
for Pe = 100 and given a fixed pumping rate Q = 5 m3/d. The longitudinal dispersivity is αL = 1
m2 and the transversal dispersivity is αT = 0.1 m2. Risk evaluated with a linear model provided in
equation (3.7) with m = 1.

more important to characterize for the ζ = 0.5 and Pe→∞ information yield curve. Summarizing,

elements that reduce hydrogeological uncertainty about the environmental target being hit (larger

plume, larger dispersivity, etc) increase the value of physiological characterization.

3.5.2 On the Significance of Concentration Averaging

Evaluation of human health risk may yield different results depending how the concen-

tration is calculated or sampled. Some analysis makes use of the concentration at one or more

fixed points in space represented by a drinking well [Maxwell et al., 1998; Maxwell and Kasten-

berg, 1999; Maxwell et al., 1999; Benekos et al., 2007] whereas other studies have used the total

solute mass flux (Qs) over a control plane [Andricevic et al., 1994; Andricevic and Cvetkovic, 1996,
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1998]. Dividing the total solute discharge (Qs) by the fluid volumetric discharge over the control

plane (Qf ) yields the flux-averaged concentration [Kreft and Zuber, 1978]Cf = Qs/Qf . See also

discussion in p.163 of Rubin [2003].
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Figure 3.9: Measuring the relative contribution of information for pumping rates Q = 5 and 50 m3/d
and source sizes ζ = 0.5 and ζ = 6.0. Results evaluated using the flux-averaged concentration over
the compliance plane. Risk evaluated with a linear model provided in equation (3.7) with m = 1.

The differences in the definition of the concentration are elucidated in the Comparative

Information Yield Curves present in Figure 3.9. We obtained Figure 9 by making use of the flux-

averaged concentration over the entire control plane (see Figure 3.1). When comparing with Figures

3.6 and 3.7, Figure 3.9 shows how the control plane approach dampens the effect of the differences

in plume size and pumping. Note that for each pumping scenario, the curves for large and small

plumes are closer together when compared to Figures 3.6 and 3.7. This is more evident to the curves

to the left of α =1 where the relative gain of information in the physiological component of risk is
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quantified. What this result illustrates is that parametric uncertainty reduction from the physiolog-

ical component is less dependent of the both plume’s dimension and the scale of the capture zone

when human health risk is evaluated with the solute discharge over a control plane. One possible

explanation is that when evaluating Cf over the control plane, the total mass of the solute present in

that particular slice of the domain is being captured independently of its spatial distribution. Even

if the peak of Qs (say above a certain regulatory threshold value) occurs along a streamline that by-

passes the well, the presence of the chemical (and it peak value) will still be lumped into Cf since

the averaging process is over the entire control plane. This averaging procedure over the control

plane also leads to smaller differences observed in the curves to the left of α = 1 when compared

to Figures 3.6-3.8 since the breakthrough curves for Cf are smoother. From a regulator’s point of

view, an erroneous interpretation of the concentration term in risk may lead to unnecessary clean

up costs. For example, the control plane approach may account for the contaminant mass along a

streamline that bypasses the drinking water well leading to remediation costs. Still, from the infor-

mation yield curves present in Figure 9, it is possible to observe that human health risk uncertainty

reduction benefits more from physiological characterization.

As for the effects of additional measurements of K, the extra dilution added by averaging

Qs by Qf smoothes out local details captured by characterization. In other words, the control

plane approach adds an enhanced diffusive mechanism that removes some of the conditional effect

gathered through site characterization and may mislead decision-makers. However, the control

plane approach can be very helpful if regulations are based on travel times as shown in Andricevic

et al. [1994]; Andricevic and Cvetkovic [1996].
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3.5.3 The Effect of Alternative Risk Models

In the present subsection, the sensitivity of human health risk towards different dose-

response models (see equation 3.7 and Figure 3.5) is illustrated. As explained previously, the main

uncertainty in risk models is at the low-dose (or low concentrations) [USEPA, 2005; Chiu et al.,

2007; Fjeld et al., 2007]. For instance, PCE is known to cause cell leukemia and kidney tumors

in rodents however the shape of its dose-response in humans is uncertain USEPA [1998]. Here, we

wish to point out how different dose-response models can lead to different characterization needs.

For illustration purposes, in the next results we will use a linear model (m = 1 in equation

3.7) and a non-linear model (m = 2.5 in equation 3.7). The linear model assumes zero risk only at

zero concentration and is normally considered conservative [USEPA, 1989, 2001, 2005] . However,

in recent years, the scientific community as well as environmental regulations acknowledges that the

use of a non-linear model maybe more adequate depending on the amount of available data used to

construct the dose-response model [USEPA, 2005; Chiu et al., 2007; Fjeld et al., 2007]. The appli-

cability of these non-linear models may be expanded to both cancer and non-cancer risks [USEPA,

2005]. Now we illustrate how different risk models would possibly manifest in Information Yield

Curves.

In Figure 3.10, we compare different risk models, their sensitivity to hydrogeological data

acquisition and consequently parametric uncertainty reduction. Figure 3.10 shows how hydrogeo-

logical sampling has a stronger implication in risk uncertainty reduction for the non-linear model

than for the linear model. This result indicates that when using a non-linear model to evaluate risk,

the data worth of sampling hydraulic conductivity increases towards risk uncertainty reduction.

Thus characterizing the behavior of the flow field becomes more important for this class of models.
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Figure 3.10: Sensitivity of human risk towards different dose-response models. Results evaluated
with ζ = 0.5 and Q = 5 m3/d.

Although this result is shown only for carcinogenic risk, it may also have implications for some

non-carcinogenic compounds with threshold doses where an adverse effect is observed. In such

cases, the worth of hydrogeological information might increase given that better understanding of

the flow patterns lead to better estimation of the concentration (or dose) values since the knowledge

of being above or below such threshold values becomes very important.

3.5.4 On the Definition of EH, O and EP, O

As presented previously in Section 3.3, an alternative way to investigate uncertainty trade-

offs is to change the definition of EH, O and EP, O such that we have EH ≤ EH, O and EH ≤

EP, O. This implies that EH, O and EP, O corresponds to the most uncertain case (see Figure 3.4).

These entropies are now evaluated with the most uncertain distributions, corresponding to the small
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amount of information available a priori. In this new definition, EH, O and EP, O are now the

starting points of uncertainty reduction. This avoids the need to pre-specify EH, O and EP, O values

as defined in Section 3.3 thus allowing more flexibility.
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Figure 3.11: Sensitivity of human risk towards different dose-response models. Results evaluated
with ζ = 0.5 and Q = 5 m3/d.

Figure 3.11 depicts how decision makers could investigate risk uncertainty reduction

strategies by plotting both the coefficient of variation of risk (CVR) versus ∆EH and ∆EP (equiv-

alent to log α). We have used the data given in Tables 3.1-3.3 to obtain plots similar to the diagram

in Figure 3.4. As a starting point, risk is evaluated with EH, O and EP, O (initial information avail-

able, most uncertain case) as well as its corresponding CVR = CV O
R . By collecting additional

data, one may perform conditional simulations from both the hydrogeological and physiological

side (see Figure 3.11.a and 3.11.b) and evaluate a new CVR. For instance, from the starting point

CV O
R , uncertainty reduction in risk can be done in a five-step procedure by collecting hydraulic
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conductivity, K, data (Figure 3.11.a, segment I), then through physiology or behavioral parame-

ters (Figure 3.11.b, segments II and III), then more K measurements (Figure 3.11.a segments IV)

and finally health variables again (Figure 3.11.b, segment V). The stopping criterion is when CVR

meets the regulatory standards. Thus the necessity of additional sampling is risk-driven and can

be decided upon based on an acceptable risk value (say the 95th percentile confidence level or a

coefficient of variation) that is in agreement with probabilistic risk assessment guidelines [USEPA,

1989]. However, this graphical approach can be useful to compare different characterization strate-

gies by making use of the estimation procedure given in Section 3.3 to evaluate entropies for a priori

unknown data.

Figures 3.11.a and 3.11.b showed a five-step procedure described in the previous para-

graph. By summing up all the ∆EH and ∆EP needed to reduce CVR (from 2.1 to 1.75) one

may come with an estimate of the sampling efforts. Yet, a different strategy, three-step procedure, is

given in Figure 3.11.c and 3.11.d which can yield a different summed entropy value when compared

to the one given by the four-step procedure (see Figure 3.11.c and 3.11.d, segments I, II and III). By

associating the risk uncertainty reduction with the corresponding total change in entropy (∆EH and

∆EP ) one may opt for the cheapest strategy to reach a compliance goal set up by environmental

agencies. For example, the costs in hydrogeology could be associated with slug tests and sampling

(laboratory experiments) while in physiology and other health-related parameters acquisition costs

can be associated with number of animals used in toxicological studies or a more detailed survey of

the behavioral characteristics of the exposed population.

Next, we show how sampling efforts can differ when using the same data acquisition

strategy but different risk models. Figures 12.a and 12.b were evaluated using a linear risk model
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while Figures 12.c and 12.d uses a non-linear model. One can see that the slopes of the curves in

12.a.b are different than 3.12.c.d for each corresponding segment. Also, Figure 3.12.a and 3.12.c

depicts how the total change in ∆EH , represented by summing δh1 and δh2 corresponds to two

distinct changes in CVR represented by ∆H . The total change in ∆EP (δp1 + δp2 + δp3) and the

associated total change in CVR denoted by ∆P , is highlighted in Figure 3.12.b and 3.12.d.
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Figure 3.12: Sensitivity of human risk towards different dose-response models. Results evaluated
with ζ = 0.5 and Q = 5 m3/d.

In summary, the usefulness of the step-wise approach given in Figures 3.11 and 3.12 is

that it allows one to see how different uncertainty reduction strategies could lead to different costs

(associated with data) by avoiding the necessity of evaluating speculative values for both EH, O and

EP, O required for equations 3.3 and 3.4 in Section 3.3.
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3.6 Summary and Conclusions

In this chapter, we discussed the theoretical and practical aspects of the Comparative In-

formation Yield Curves within a risk-driven context. The relevance of transport and flow scales in

defining characterization needs in human health risk is addressed. Through numerical experimen-

tation, conditions are identified where hydrogeological site characterization, through measurements

of hydraulic conductivity, has a stronger impact in uncertainty reduction in risk as well as condi-

tions in which physiological uncertainty reduction has a significant impact. In order to achieve this,

we investigated the interplay between plume-dimension, capture zones induced by pumping action,

Peclet number and sampling scales for different conditional simulations. We have quantified the

relative gain of information through uncertainty reduction from both physiology and flow physics

for a fixed, although not limited to, fractile of human variability. Results were analyzed for the low-

dose risk curves. Based on the simulations results, physical configuration (2D groundwater flow

and transport) and risk pathways, we highlight the following points:

1. The role of the plume’s dimension proved important in defining characterization needs in the

risk-driven context. Results show that uncertainty reduction in human health risk benefits

more from hydrogeological site characterization if the contaminant source is small relative to

the heterogeneity correlation length. The human health risk CDF is less sensitive to measure-

ments of hydraulic conductivity if the contaminant source is large.

2. The value of information not only depends on plume’s dimension but also on its interplay

with the pumping rate related to the scale of capture zone. For high pumping rates, thus

larger capture zones, the value of information from the hydrogeological component becomes

less dependent of the plume’s dimension. The opposite occurs as the pumping rate decreases
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and the plume’s dimension begins to gain a role in defining hydrogeological sampling needs.

3. Results indicate that uncertainty reduction in risk may benefit more from parametric un-

certainty reduction from the physiological component as opposed to hydrogeological if the

plume’s dimension approaches ergodicity.

4. The significance of plume-dimension in defining hydrogeological characterization needs is

also dependent on the phenomenon occurring at pore-scale. For high Peclet conditions,

plume size relative to the heterogeneity scale has a role in defining characterization efforts.

When pore-scale dispersion effects are increased (lower Peclet), the knowledge of whether

the plume is large or small becomes less relevant in defining hydrogeological characteriza-

tion strategies.

5. Similar conclusion was obtained when comparing concentration measured in a well versus

the flux-averaged concentration at a control plane. The differences between concentration

pumped by a well and concentration at a control plane is highlighted and can also lead to

significant different characterization needs from both physiological and hydrogeological per-

spective.

6. We also showed how different risk models have different effects in risk uncertainty reduction

and defining characterization needs.

For this work, we have made extensive use of information entropy to investigate uncer-

tainty trade-offs in a graphical manner. We denote these entropy plots as Information Yield Curves.

This is a useful concept since it allows one to easily view the relative contribution of information in

risk from the physiological and the hydrogeological component. An important difference regarding
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the use of these entropy plots as opposed to CDF is that one can assign changes in entropy for both

physiology and hydrogeology for a fixed uncertainty reduction in human health risk. The challenge

in this approach is to assign estimated financial values to these α values. This way, decision makers

can verify which uncertainty reduction campaign is cheaper for a given uncertainty reduction in risk

estimates. Translating values into financial terms allows one to cast the analysis in a cost-benefit

framework as studied by Massman and Freeze [1987] and Freeze et al. [1990]. Section 3 provided

a discussion of Information Yield Curves and how to make this concept practical in real site char-

acterization problems. For our simulations, the mean value of risk did not vary significantly from

each conditioning case and all were found to be within the same order of magnitude. However,

if the mean value of risk varies significantly, other measures of uncertainty besides ∆CVR might

be more informative (for instance: relative entropy or 95th confidential interval). For our analysis,

the uncertainty in the hydrogeological component was within SRF parameters. In this chapter we

did not account for uncertainty in the chemical reactions, although this is not a limitation in the

framework or the numerical implementation. These parameters can be accounted in θH . Another

option would be to generalize the metric to other dimensions to account for specific subgroups of

parameters. For example: a subgroup for chemical parameters, another for the SRF parameters and

finally for source characteristics.

It is important to note that the framework and results presented here can be extended to

different types of data used for conditioning. Also, other sources of uncertainty can be incorporated

into the framework. We have used a two-dimensional model to answer the research questions ad-

dressed in the introduction of this chapter. Reproducing these numerical simulations and problem

configuration in a three-dimensional physical model may enhance the results obtained. For an in-
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stance, Maxwell et al. [1999] reported that finer sampling over the vertical direction is necessary and

relevant to predict the expected plume path. Our approach can be extended to account for variabil-

ity within the exposed population. Here we calculated the Comparative Information Yield Curves

for a single fractile in population variability (see Section 3.2 for discussions on ΘP and θP,i),

however one may obtain information yield curves for different fractiles. Given this, 3D surfaces

of information yield could be evaluated. As for the pore-scale dispersion analysis, the slopes of

the information yield curves are affected by both longitudinal and transversal Peclet numbers. For

instance, increasing the transversal dispersion coefficient, more mass will be transferred between

streamlines, thus smoothing the concentration field. This effect is reflected in the information yield

curves. Nevertheless, one of the novelties of the present work is the illustration of the importance of

considering flow and transport scales when defining characterization needs towards better resource

allocation within a risk-driven approach. These results shows how any characterization effort should

be task-oriented. Most importantly, the current chapter introduced the theoretical and practical as-

pects of the Information Yield Curves in human health risk assessment. This approach allows one

to investigate uncertainty trade-offs from the health-related parameters and physical parameters.

Notation

Symbols and their respective units:

ACs: Indoor air concentration [M/L3]

AT : Average time [t]

b: Depth of the aquifer [L]

LADDG: Average daily dose for groundwater intake [M/(M t)]
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LADDH : Average daily dose for inhalation [M/(M t)]

C, Cw: Resident concentration and well concentration [M/L3]

Cf : Flux-averaged concentration [M/L3]

CPFG, CPfH : Cancer potency factor [(kg − d)/mg]m

CY , CY Y : Spatial covariance of the logconductivity

CVR, CV o
R: Coefficient of variation for risk [-]

Dd: Dispersion tensor [L2/t]

ED: Exposure duration [t]

EF : Exposure frequency [t/t]

ETs: Shower exposure time [hr/d]

EP , EP, O: Joint entropy for physiological parameters

EH , EH, O: Entropy for hydrogeological parameters [-]

fR(r): Risk PDF [-]

fP (θP ): PDF for risk-related parameter

fH(θH): PDF for hydrogeological parameters

f̃ : Estimate of a PDF

fmo: Metabolized fraction of contaminant ingested [-]

FR(r): Risk CDF [-]

F c
R(r): Risk CDF conditioned on measurements [-]

HR/BW : Inhalation rate per body weight [m3/(d-kg)]

h: Hydraulic head [L]

h1, h2, h3, h4: Markings on Figure 3.6
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I: Number of individuals in the exposed population [-]

IR/BW : Ingestion rate per body weight [L3/(t M)] or [L/(d-kg)]

Ki: Hydraulic conductivity at a specific location xi [L/t]

KG: Geometric mean of the hydraulic conductivity [L/t]

K(x): Hydraulic conductivity at a generic location x [L/t]

`S : Dimension of the contaminant cloud in the x2-direction [L]

m: Coefficient in the risk model.

{mi}: Set of measurements

mY mean of the log conductivity [-]

N : Number of locations sampled and number of samples [-]

ne: Porosity [-]

Pi: Behavioral and exposure parameters for the ith individual

Qs(x, t): Total solute mass flux [M/t]

Q, Qw: Pumping well [L3/t] and volumetric fluid discharge [L3/t]

Rf : Retardation coefficient [-]

r: Increased cancer risk or simply risk [-]

〈R〉: Expected value of increased cancer risk [-]

〈R2〉: Second moment of increased cancer risk [-]

U , 〈V1〉: Mean velocity in the x1 direction [L/t]

TES : Transfer efficiency from tap water to air [-]

V RS : Air exchange rate [mg/m3]

V: Velocity vector with components Vi for i = 1 and 2 [L/t]
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Var[σ2
Y ], Var[KG]: Variance of σ2

Y and KG

x: Cartesian coordinate system [L]

xw: Location of the wth pumping well [L]

Y : Logarithm of the hydraulic conductivity

WS : Tap water use rate [1/t] or [1/hr]

α: Ratio between entropies [-]

αL, αT : Dispersivities in the x1 and x2 direction [L2]

δ: Dirac delta

δhi, δpi: Markings on Figure 3.12

∆CVR: Relative difference for the risk coefficient of variation [-]

∆EH , ∆EP : Entropy difference [-]

λ: Correlation heterogeneity length of the aquifer [L]

σ2
Y : variance of the logconductivity [-]

σ2
R: Variance of increased cancer risk [-]

θH : Hydrogeological parameter vector

θP : Risk related parameter vector

ξ: Lag distance [-]

ζ: Dimensionless source dimension `s/λ
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Chapter 4

Bayesian Geostatistical Design: Optimal

Site Investigation When the

Geostatistical Model is Uncertain

4.1 Introduction

Results from the previous chapters showed conditions when risk uncertainty reduction

benefits more from hydrogeological data acquisition (for example, non-ergodic plumes). In this

chapter we will focus on hydrogeological sampling. Scarcity of data and subsurface variability lead

to the understanding of hydraulic conductivity as a Space Random Function (SRF) [de Marsily,

1986; Dagan, 1987; Kitanidis, 1997; Rubin, 2003]. This acknowledges the uncertainty in flow and

transport models stemming from unresolved heterogeneity of soil parameters, patterns of flow, and

their impact on contaminant transport [Dagan, 1984, 1987; Rubin, 2003]. Adopting the model-based
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geostatistical approach [Diggle and Ribeiro, 2007], the SRF is defined by the global mean value,

trend coefficients, and parameters for covariance models (e.g., the variance and integral scales of

the logconductivity), often summarized under the term of structural parameters.

Incorporating hydrogeological flow and tracer data helps to reduce uncertainties, leading

to smaller confidence bounds of model predictions, and supporting management decisions at a lower

risk of liability. Two types of information are required: information on the spatial hydraulic con-

ductivity field, and the spatial statistics of conductivity that allow to interpolate between unsampled

positions. Given limited resources for hydrogeological characterization, this information need has

to be satisfied in an efficient manner [James and Gorelick, 1994] via geostatistical optimal design.

An extensive review is provided by Herrera and Pinder [2005], including the major contributions

by Freeze and co-workers [Freeze et al., 1990; Massman and Freeze, 1987]. The importance of

setting priorities in allocating resources is also highlighted in the works of Maxwell et al. [1999];

de Barros and Rubin [2008] and de Barros et al. [2009]. These works showed the importance of

task-oriented characterization.

Most of these studies presume prefect knowledge on the structural parameters. In realistic

scenarios, however, information is too sparse to justify such strong a priori assumptions. Structural

parameters tend to be poorly identifiable, especially from data sets limited in size and accuracy.

Instead, there is a trend to perceive stochastic descriptions of structural parameters as much more

adequate. Pardo-Iguzquiza [1999] illustrated the inadequacy of point estimates for the structural and

trend parameters in synthetic case studies. Maximum Relative Entropy (MRE) techniques [Wood-

bury and Ulrych, 1993] allow transfer of general background knowledge from hydrogeological

databases, from sites that are perceived to be geologically similar or from subjective expert opinion
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[Rubin, 2003].

The principle of Bayesian geostatistics [Kitanidis, 1986] acknowledges that limited data

do not support a unique geostatistical description. Instead, structural parameters are treated as yet

another set of random variables on top of the hydraulic conductivity field. Further fundamental

steps were provided by Feinerman et al. [1986] and Rubin and Dagan [1987, 1992]. MRE yields

probabilistic distributions of structural parameters (no point estimates), and can be used as input to

Bayesian geostatistics [Woodbury and Ulrych, 2000].

Uncertain structural parameters tend to increase the uncertainty of model predictions, such

as contaminant levels or fluxes, because structural parameters have a substantial influence on macro-

scopic flow, plume dilution and dispersion [Rubin, 2003]. Conditional simulation (conditioned on

direct local measurements of the space function) with uncertain structural parameters is provided

by Pardo-Iguzquiza and Chica-Olmo [2008] and in Rubin [2003]. The application to geostatistical

inverse modeling has been highlighted by Woodbury and Ulrych [2000] and by Zhang and Rubin

[2009].

Because structural parameters are sufficiently known in only a few cases, inclusion of their

uncertainly is all the more relevant in optimal design. Only small amount of data exists when setting

out to plan site investigation via optimal design techniques. Although uncertainty of geostatistical

models is largest prior to data collection, it is rarely recognized in optimal design studies.

The main focus of Chapter 4 is that uncertainty in the geostatistical model has to be ac-

counted for in geostatistical optimal design. By optimal design, we mean an optimal sampling

strategy that captures the geostatistical characteristics. Supported by the evidence and facts dis-

cussed above, it is reasonable that optimal design should fulfill the following four guidelines in the



90

context of uncertain geostatistical structure:

1. A common objective of optimal design is to minimize the uncertainty of predictions (such as

contaminant levels or fluxes). Uncertainty of structural parameters contributes to the overall

prediction uncertainty, so it must be assessed and accounted for.

2. Optimal design defines a rational way of data collection, and these data have a vast potential

to better identify the geostatistical model and its structural parameters. This potential must be

considered and utilized in defining and finding the optimal design.

3. Estimating structural parameters should be “treated as a means to the primary end of spatial

[or hydrogeological] prediction, rather than as an end in itself ”, as suggested by Diggle and

Lophaven [2006]. This asks for an optimal resource allocation between collecting spatial and

structural information.

4. Optimal design patterns are sensitive to assumed values of structural parameters in geosta-

tistical models. The resulting patterns, however, should be robust with respect to estimation

error in structural parameters [e.g., Christakos, 1992, p. 438].

Until quite recently, no geostatistical optimal design study has addressed uncertainties resulting

from unknown structural parameters, or investigated how their designs may aid in reducing that

uncertainty. Only few optimal design studies in hydrogeology [Criminisi et al., 1997] analyzed

whether their resulting design patterns are robust when using inaccurate estimates of structural

parameters.

The work on Bayesian design reported by Müller [2007, chapter 3] included uncertain

trend parameters into geostatistical design, but left uncertain covariance functions untouched. Most
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geostatistical design studies serve either the collection of spatial information or the identification of

structural parameters. The former requires coverage of specific areas of the domain with samples,

while the latter requires sampling certain lag distances. These objectives may seem contradictory to

one another, but can be combined in multi-objective optimization [e.g., Müller, 2007, pp. 173].

Diggle and Lophaven [2006] introduced the concept of Bayesian Geostatistical Design,

which accommodates for uncertainty in covariance parameters within the design procedure. These

authors minimizes the spatial average of the kriging estimation variance and limited their study to

direct measurements of the estimated quantity. The more recent work by Marchant and Lark [2007]

may be seen as a direct extension, using a first-order approximation for the influence of structural

parameters on the kriging variance for the sake of computational speed-up. Similar ideas, including

the one by Zimmerman [2006], are summarized in Müller [2007, pp. 178].

This study may claim, given the information gathered in the literature review, to be the

transfer and first-time application of Bayesian Geostatistical Design to geostatistical inverse prob-

lems. We extend the Bayesian Geostatistical Design framework to measurements of dependent

state variables (such as hydraulic heads) and the prediction variance of yet other state variables

(such as solute concentrations or arrival times at unobserved locations). The theoretical foundation

of Bayesian Geostatistical Design is summarized and discussed in Section 4.2.

One step towards further generalization is to become more independent of arbitrarily cho-

sen model shapes of covariance functions. Within hydrogeologic applications of geostatistical in-

verse modeling and optimal design, it is common practice to assume a prescribed parametric form

of the covariance model. Neuman [2003] stressed that the geostatistical model choice will always be

uncertain, and that this uncertainty should not be neglected. Especially when considering the initial
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scarcity of data in realistic optimal design scenarios, we deem it highly inappropriate to assume a

single fixed parametric form of the covariance model.

Bayesian Model Averaging is an attractive option to account for uncertainties in model

selection. Hoeting et al. [1999] offer a very complete review of its principles and strengths. Ap-

plication to hydrogeological problems is considered by Neuman [2003]. In this work, the Matérn

family of covariance functions is used [Matérn, 1986] because it has an additional shape parameter.

Feyen et al. [2003] mentioned briefly that this shape parameter could be used to represent uncer-

tainty in the shape of covariances. Important details on controlled differentiability and smoothness,

model averaging, and on the role in geostatistical inversion are summarized by Zhang and Rubin

[2009]. Following their rationale, we utilize the parametric control on covariance shape to trans-

form the model selection problem to a stochastic parameter inference problem. Treating the shape

parameter as random variable resembles Bayesian Model Averaging over a continuous spectrum of

models governed by the additional shape parameter. These matters are discussed in Section 4.3.

We illustrate the resulting framework in a synthetic case study. In Sections 4.5 and 4.6,

we optimize sampling strategies for predicting (1) contaminant levels and (2) arrival times at an

ecologically sensitive location, due to a plume that could evolve from a hypothetical future contam-

ination. Considered measurements are hydraulic heads and logconductivity samples. In a series of

scenarios, we vary between (a) known and (b) uncertain structural parameters in the geostatistical

model. On this basis, we demonstrate and discuss how the resulting design patterns adapt to struc-

tural uncertainty, how well the design patterns allow to identify the geostatistical model, and how

the conditional prediction variance is affected by structural uncertainty.

For the synthetic case study, we use a lean and computationally efficient implementation
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based on the static Ensemble Kalman Filter [Herrera and Pinder, 2005] and the Kalman Ensemble

Generator [Nowak, 2009b]. We extend these approaches by a first-order expansion in structural

parameters, as shown in Section 4.4. It is important to stress that neither is Bayesian Optimal Design

limited to the implementational choice used in this work, nor is it restricted to the exemplary choice

of unknown parameters and data types.

In summary, the objective of this work is to develop an optimal design framework that

more accurately characterizes, handles and accounts for the uncertainty in geostatistical model se-

lection and in structural parameter values. The main benefits will be to reduce the arbitrariness of

a priori choices and to shorten the list of assumptions that are hard to defend in the absence of suf-

ficient data. The results presented in this chapter have direct implications related to human health

risk. This is addressed in the conclusion section of this chapter.

4.2 Bayesian Geostatistical Design

4.2.1 Model-Based Bayesian Geostatistics

Model-based geostatistics refer to the choice of parametric models for the mean value,

large-scale trends and the covariance function [Diggle and Ribeiro, 2007]. The Bayesian version

adds uncertainty in the parameters of the geostatistical model, and forms the basis for Bayesian

Geostatistical Design.

Consider s a ns × 1 random space vector s = Xβ + εs (e.g., logconductivity discretized

on a numerical grid). It is comprised of a trend model E [s] = Xβ plus zero-mean fluctuations

εs. X is a ns × p matrix containing p deterministic trend functions with p corresponding trend

coefficients β. θ are the structural parameters , such as correlation scale and variance parameters of
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a covariance function, so that εs has a covariance matrix C = C (θ).

Conventional geostatistics consider known structural parameters, and the distribution of

s is p (s|β, θ). Bayesian geostatistics reflect the uncertainty of structural parameters by their joint

distribution p (β,θ). This is in contrast to classical variogram analysis [Matheron, 1971] and max-

imum likelihood estimation methods [Kitanidis, 1995], where structural parameters are represented

by simple point estimates. The Bayesian distribution (marked by a tilde) is obtained by marginal-

ization [Kitanidis, 1986]:

p̃ (s) =
∫

β

∫

θ
p (s|β, θ) p (β, θ) dθ dβ . (4.1)

Now consider the ny × 1 vector y of measurements at locations xm according to y =

fy (s)+εr. Here, fy (s) is a process model (e.g., the groundwater flow equation) that relates observ-

able variables (e.g., hydraulic heads) to s. εr is a vector of random measurement errors with known

distribution p (εr). The distribution of s conditional on a given vector yo of measurement data is

according to Bayes theorem:

p (s|β, θ,yo) ∝ p (yo|s) p (s|β, θ) , (4.2)

The Bayesian distribution is obtained by marginalization:

p̃ (s|yo) =
∫

β

∫

θ
p (s|β,θ,yo) p (β,θ|yo) dθ dβ . (4.3)

Note that the entire distribution p (s, β, θ) has been jointly conditioned on the field observations

yo. For a detailed discussion, see Kitanidis [1986]; Pardo-Iguzquiza [1999]; Woodbury and Ulrych

[2000]; Diggle and Ribeiro [2002].

The final purpose is the prediction of yet a different variable c (e.g., concentration or

contaminant arrival time), related to s via c = fc (s) (e.g., the transport equation). The Bayesian



95

predictive distribution for c is obtained by integration over the distribution of s:

p̃ (c|yo) ∝
∫

β

∫

θ

∫

s
p (c|s) p (s|β, θ,yo) p (β, θ|yo) ds dθ dβ (4.4)

with Bayesian mean c̃ and increased variance σ̃2
c|y

c̃ (yo) = Eβ,θ|yo
[Es [fc (s) |yo, β,θ]] (4.5)

σ̃2
c|y (yo) = Eβ,θ|yo

[Vs [fc (s) |yo, β,θ]]

+Vβ,θ|yo
[Es [fc (s) |yo, β,θ]] (4.6)

where Ea [·] is the expected value operator over the distribution of a random variable a, and Va [·]

is the respective variance. Equation (4.5) follows from the double expectation theorem, and equa-

tion (4.6) reflects a variance increased by uncertainty in the conditional mean value [compare with

Kitanidis, 1986].

4.2.2 Optimal Design

Outside geostatistics, optimal design theory has a long history in the traditional context of

linear and non-linear regression [Pukelsheim, 2006] and its application to geostatistics is explained

by Müller [2007]. A review and synthesis of specific geostatistical design criteria is provided by

Nowak [2009a].

A design is a set of decision variables d that specify the number, location and types of

measurements to be collected in the data vector y. The objective is to minimize the uncertainty in-

herent in the predictive distributions p (s|yo) or p (c|yo), before even knowing the data values yo. To

this end, a task-specific measure of prediction uncertainty φ (d, p) is defined [Müller, 2007; Nowak,

2009a] and minimized. Characterization needs defined within a task driven approach are also given



96

in Maxwell et al. [1999]; de Barros and Rubin [2008]; de Barros et al. [2009]. For Bayesian Geo-

statistical Design, these distributions are simply replaced by their Bayesian counterparts p̃ (s|yo) or

p̃ (c|yo) (equations 4.3 and 4.4):

φ (d, p̃) = Ey [φ (y (d) , p̃)] =
∫

φ (y (d) , p̃) p̃ (y) dy . (4.7)

In allusion to the monetary context [James and Gorelick, 1994; Feyen and Gorelick, 2005], equa-

tions like equation (4.7) are sometimes called the expected data worth.

Equation (4.7) implicitly includes averaging over all possible values of the structural pa-

rameters, because

p̃ (y) =
∫

β

∫

θ
p (y|θ, β) p (θ, β) dθ dβ . (4.8)

Diggle and Lophaven [2006] evaluated the integral in Eq. (4.8) only at the truth value θ = θo of the

structural parameters. It is believed that it is inadequate to assume any value of θ to be true within

the Bayesian paradigm. To be precise, the credibility of any particular value of θ to qualify as truth

is quantified by its prior distribution, leading to integration over p (β, θ).

In the illustrative test case (but not as a limitation of the general framework), we will

choose to minimize the expected Bayesian prediction variance of c:

Ey

[
σ̃2

c|y
]

= Ey

{
Eβ,θ|y

[
Vs|y(d),β,θ [fc (s)]

]}

+Ey

{
Vβ,θ|y

[
Es|y(d),β,θ [fc (s)]

]}
. (4.9)

It is important to highlight the two individual contributions to overall prediction uncertainty in the

right-hand-side of the above equation: The first term resembles the prediction variance of concentra-

tion, averaged over all possible values of potential data and structural parameters. The second term



97

reflects how the estimate of concentration varies due to the uncertainty of structural parameters. The

two terms result directly from Bayesian principles. They combine the objectives of interpolation and

structural identification in a natural manner without requiring manual weighting.

The second term vanishes at the limit of known structural parameters, e.g., when the data

yo set allows strong inference of the structural parameters. If, in addition, fy (s) and fc (s) are linear

(i.e., the estimation problem is linear), the remaining prediction variance Vs|y(d),β,θ [·] in equation

(4.9) is independent of data values, and the operator Ey [·] disappears. This property is inherited

from the estimation variance of Kriging [e.g., Journel and Huijbregts, 1978; Rubin, 2003].

Note that this form of the minimum variance design criterion complies with all four guide-

lines stated in the introduction of this chapter:

1. It allows for uncertain structural parameters in the entire analysis.

2. It includes the identification of structural parameters in the objective function.

3. The importance of identifying the structural parameters is judged naturally via their contribu-

tion to the overall prediction uncertainty.

4. The optimal design is robust over the entire range of structural parameter specified by their

prior distribution.

More details on the fulfillment of the four guidelines are provided in Sections 4.6 and 4.7.
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4.3 Continuous Bayesian Model Averaging and the Matérn Family of

Covariance Functions

So far we have formulated the Bayesian Geostatistical Design framework without speci-

fying too much about its uncertain input components. In this section, we address the issue of geosta-

tistical model uncertainty, and present an approach to incorporate the uncertainties of model selec-

tion into the framework of Bayesian Geostatistical Design. The fundamental principle of Bayesian

Model Averaging [Hoeting et al., 1999] is that each considered model alternative is assigned a

prior probability to reflect its (subjective) credibility level. The modeling task is performed with

all model alternatives. For each alternative, the mismatch between model predictions and available

data is used to assign a likelihood. Posterior credibilities are then assigned as the product of prior

credibility and likelihood. The final result is the ensemble of model outcomes, each one weighted

by its posterior credibility. The overwhelming advantage is the increased robustness towards errors

in individual conceptual models or in model selection.

The very same principle can be applied to the problem of geostatistical model selection

[Neuman, 2003]. One could pick an arbitrary choice from the entire list of traditional parametric

covariance models [Rubin, 2003, chapter 2], and then proceed with Bayesian Model Averaging.

However, that the choice of model alternatives should not be restricted by traditional adherence to a

small set of certain preferred covariance models.

Instead, we recommend a more elegant approach based on the Matérn family of covari-

ance functions Matérn [1986]. Zhang and Rubin [2009] suggest to use the flexibility of the Matérn

family in order to include uncertainty in covariance shape and smoothness into geostatistical inver-

sion.
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The Matérn function is given by:

C (`) =
σ2

Y

2κ−1Γ (κ)
(
2
√

κ`
)κ

Bκ

(
2
√

κ`
)

` =

√(
∆x1

λ1

)2

+
(

∆x2

λ2

)2

. . . , (4.10)

where σ2
Y is the variance of logconductivity, ` is the anisotropic effective separation distance, and

κ ≥ 0 is an additional shape parameter. Γ (·) is the Gamma function, and Bk (·) is the modified

Bessel function of the third kind (Bessel’s k) of order κ [Abramowitz and Stegun, 1972, section

10.2]. ` has λi as scale parameters for each spatial dimension. In the form provided here, ` is scaled

by a factor 2
√

κ to make the integral scale roughly independent of κ [e.g., Handcock and Stein,

1993]. For the specific values of κ = 0.5, 1, ∞, the Matérn family simplifies to the exponential,

Whittle and Gaussian covariance models, respectively (see Figure 4.1). More details on properties

and specific additional advantages of the Matérn family are provided by Zhang and Rubin [2009]

and by Stein [1999].

The novelty of this approach is the following: If one treats κ as a discrete random vari-

able to resemble model selection, one arrives back at the principle of Bayesian Model Averaging.

We suggest to keep κ a continuous parameter on the positive real line, introducing a continuous

spectrum of model alternatives. We then simply include κ in the vector θ and treat it no different

than the other uncertain structural parameters. This way, we convert the problem of model selection

to a problem of stochastic parameter inference, embedded in the Bayesian approach, with a long

list of available methods to draw from. We refer to this approach as Continuous Bayesian Model

Averaging.

The idea to treat Matérn’s κ as uncertain structural parameter has already been used in

Handcock and Stein [1993] and in Diggle and Ribeiro [2002] for the geostatistical description of a
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Figure 4.1: Examples from the Matérn family of covariance functions for different values of the
shape parameter κ, including some special cases

digital elevation model. However, these authors did not discuss their choice in the light of the model

selection problem, Bayesian Model Averaging, its extension to the continuous case, optimal design

and the robustness of designs with respect to inadequate model selection.

4.4 Implementational Choices for the Illustrative Test Case

4.4.1 Computational Approach

In the upcoming test case, we will demonstrate the differences between optimal design

patterns for known and uncertain structural parameters. For this purpose, we need a high spatial

resolution of allowable sampling positions. In the present section, we provide a computationally

efficient first-order approximation of structural uncertainty attached to an Ensemble Kalman Fil-

ter [Evensen, 1994; Burgers et al., 1998; Evensen, 2003] and a sequential exchange optimization
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algorithm.

However, Bayesian Geostatistical Design is not restricted to any of the choices and ap-

proximations taken in our study. In principle, any conditional simulation tool would suffice, given

that it allows evaluation of conditional prediction variances. The advantage of the Ensemble Kalman

Filter is its flexibility, the straightforward implementation, and its ability to evaluate prediction vari-

ances without conditioning the random fields.

4.4.2 Computational Efficiency

The computational costs for evaluating equation (4.9) should not be underestimated. This

holds in particular if fy (s) and fc (s) require to solve partial differential equations. To reduce com-

putational costs, most studies restrict the design space to only a few allowable sampling locations, or

by comparing a low number of design candidates: Feyen and Gorelick [2005] compared 25 different

design candidates, and Janssen et al. [2008] considered 42 allowable sampling positions. McKinney

and Loucks [1992] reached 200 allowable locations because they featured only direct measurements

of logconductivity and linearized the prediction problem.

Linearized approaches are computationally very efficient and useful when understanding

how to use them within their range of validity. Cirpka et al. [2004] used adjoint-state sensitivities

in conjunction with FFT-based error propagation [Nowak et al., 2003], reaching 90,000 allowable

locations in a hydraulic design problem. The static Ensemble Kalman Filter allowed Herrera and

Pinder [2005] to turn towards joint space-time optimization of sampling networks.

None of these studies considered structural uncertainty. Handling uncertain structural pa-

rameters complicates the evaluation of equation (4.9). Diggle and Lophaven [2006] restricted their

study to the comparison of only two different design patterns, and featured only direct measure-
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ments of the estimated parameter field. The implementation shown here allow us to consider a fine

raster of 20,000 sampling position candidates on a contemporary desktop computer, while allowing

for both structural uncertainty and complex relations between data, parameters and the prediction

goal.

4.4.3 Multi-Gaussian First-Order Second-Moment Approximation

Casting Bayesian Geostatistical Design into a first-order second-moment framework paves

the way to derive closed-form expressions for Bayesian design criteria [Marchant and Lark, 2007].

We model logconductivity as a multi-Gaussian vector s of discrete cell-wise values with s|β, θ ∼

N (Xβ,Css (θ)), i.e., with mean vector Xβ and covariance matrix Css(θ). In the generalized in-

trinsic case, uncertain β is absorbed in a generalized distribution of s. We assume a Gaussian prior

distribution β ∼ N (β∗,Cββ) with expected value β∗ and covariance Cββ. By assuming β multi-

Gaussian and independent of θ, we can integrate over p (β) in equations (4.3) to (4.6) analytically

[Kitanidis, 1986]: s|θ ∼ N (Xβ∗,Gss (θ)), where Gss = Css (θ) + XCββXT is a generalized

covariance matrix [Kitanidis, 1993]. This approach has already proven useful to generalize geosta-

tistical inversion [Nowak and Cirpka, 2004].

The individual steps of linearizing fy (s) and fc (s) in s are summarized in Appendix E,

leading to:

Ey

[
σ̃2

c|y
]

= Eθ

[
σ2

c|y (θ)
]

+ Ey

{
Vθ|y [ĉ (y (d) , θ)]

}
, (4.11)

where σ2
c|y (θ) is the conditional variance of concentration for given θ.

To further simplify equation (4.11), we expand in θ about its prior mean value θ̄, truncate
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after first-order, and assume a prior covariance Cθθ to specify the structural uncertainty, similar to

Rubin and Dagan [1987]. After executing Ey {·}, we obtain (see Appendix F for details):

Ey

[
σ̃2

c|y (d)
]

= σ2
c|y

(
θ̄
)

+
∑

i

∑

j

〈
Cθθ|y

〉
ij



. . .

. . .
∂c̄

∂θi

∣∣∣∣
θ̄i

∂c̄

∂θj

∣∣∣∣
θ̄j

+

(
∂κ

∂θi

∣∣∣∣
θ̄i

)
Gyy

(
θ̄
)
(

∂κ

∂θj

∣∣∣∣
θ̄j

)T


 (4.12)

where κ = HcGss (θ)HT
c G−1

yy (θ) is the Kalman gain of concentration in equation (F3), c̄ =

Es [c], and θ̄ = Eθ [θ].
〈
Cθθ|y

〉
ij

is the i, j-the element in the conditional covariance of θ, here

approximated by the inverse of the Fisher information F. Details of the derivation are provided in

Appendix F.

Once actual data values become available after the optimal design task, we can update the

structural parameters with the technique by Kitanidis and Lane [1985] and Kitanidis [1995], later

upgraded to the generalized intrinsic case by Nowak and Cirpka [2006]. The conditional covariance

of θ is again approximated by the inverse of F, and the conditional mean θ̂ is approximated by

θ̂ ≈ θ̄ − F−1g

Cθθ|y ≈ F−1 , (4.13)

where g is the gradient and F is the Fisher information matrix as specified in Appendix F.

4.4.4 The Ensemble Kalman Filter and Kalman Ensemble Generator

Equation (4.12) and the equations in the appendices merely require auto- and cross-

covariances between data and predicted variables, and their derivatives with respect to the struc-

tural parameters. We entrust this task to the static Ensemble Kalman Filter (sEnKF) by Herrera
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[1998], and obtain the derivatives with respect to θ from additional parallel sEnKF’s with slightly

different parameter values. Nowak [2009b] clarifies that Ensemble Kalman Filters are based on a

certain type of optimal linearization that outmatches traditional first-order expansions in accuracy,

adequately represent ensemble dispersion and dilution of solute transport, and hence avoid the non-

trivial choice of dispersion coefficients when using estimated conductivity fields [e.g., Rubin et al.,

1999; Nowak and Cirpka, 2006].

Once the design is decided upon and the data become available, we condition the log-

conductivity field by the Kalman Ensemble Generator [Nowak, 2009b]. The Kalman Ensemble

Generator is an adaptation of the EnKF to geostatistical inversion, and has been upgraded by suc-

cessive linearization, a Levenberg-Marquardt stabilization and an acceptance/rejection scheme.

4.4.5 Implementation

The quasi-linear Ensemble Kalman Generator and the static Ensemble Kalman Filter are

implemented in MATLAB. A standard Galerkin Finite Element Method (FEM) for groundwater

flow and the streamline upwind/Petrov-Galerkin FEM for solute transport are used [Hughes, 1987;

Fletcher, 1996]. The resulting equations are solved using the UMFPACK solver [Davis, 2004]. We

generate random hydraulic conductivity fields with the spectral method by Dietrich and Newsam

[1993]. Each ensemble had a size of 4000 realizations, which is more than sufficient for Ensemble

Kalman Filters in hydrogeological applications [Chen and Zhang, 2006].

Unlike many recent studies [Reed et al., 2000; Zhang et al., 2005; Wu et al., 2006; Janssen

et al., 2008], we do not optimize our sampling locations with genetic algorithms [Goldberg, 1989].

Other studies [e.g., McKinney and Loucks, 1992; Criminisi et al., 1997; Cirpka et al., 2004] took

the greedy search algorithm [e.g., Christakos, 1992, p. 411], which is computationally much faster.
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We use the sequential exchange algorithm [e.g., Christakos, 1992, p. 411], a simple-to-implement

upgrade to the greedy search algorithm with at least Pareto-optimal design solutions.

4.5 Synthetic Case Study

4.5.1 Scenario Definition and Relevance in Risk Assessment

We demonstrate the above methodology and the impact of parametric uncertainty on opti-

mal design patterns in a synthetic case study. Consider a potential future groundwater contamination

at an environmentally (or ecologically) sensitive location due to a hypothetical upstream groundwa-

ter contamination as part of a risk scenario. We will follow two different prediction objectives: to

minimize the prediction variance of (1) contaminant concentration and (2) arrival time at the sensi-

tive location. Objective (1) has been considered in the study by McKinney and Loucks [1992]. We

extend their scenario to uncertainty in the geostatistical model and its structural parameters, and to

measurements of dependent state variables such as hydraulic heads.

Two objectives are chosen because different objectives can yield fundamentally differ-

ent design patterns. The actual choice of design objectives in site-specific applications of course

depends on the modeling and management goals at the site under consideration. If necessary, multi-

purpose design techniques [Müller, 2007] may be used to fuse different design objectives into one.

The scope of the current case study, however, is not to compare different prediction objectives. The

main point here is to illustrate the principle of Bayesian geostatistical design, i.e., how optimal

sampling patterns change when allowing for structural uncertainty. For this purpose, our two exem-

plary objectives will suffice, and we will discuss the physical mechanisms that lead to the resulting

patterns only in limited detail.
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We will place 24 boreholes to obtain both core-scale measurements of transmissivity (e.g.,

from slug tests or disturbed-core grain-size analysis) and additional co-located measurements of hy-

draulic head (e.g., from minimum-cost groundwater level monitoring wells at the cored locations).

To demonstrate the effect of structural uncertainty, we compare the results between (a) known and

(b) uncertain structural parameters β and θ in the geostatistical model. Combined with our two

prediction objectives, this yields four different cases (1a, 1b, 2a and 2b; see Table 4.3).

This type of scenario is relevant, e.g., in the probabilistic assessment of human health

risk [de Barros and Rubin, 2008; de Barros et al., 2009], and its motivation shall be laid out in

brief. Groundwater contamination in the proximity of drinking water wells or other environmen-

tally sensitive locations may pose risks to human health risk. Many environmental regulations define

concentration thresholds for such cases [USEPA, 1989, 1991, 2001]. This entails stochastic predic-

tion of contaminant concentration at the sensitive location [e.g., Rubin et al., 1994; Andricevic and

Cvetkovic, 1996; Maxwell et al., 1999]. Incorporating hydrogeological flow data helps to reduce

the involved uncertainties, allows for a tighter prediction of contamination and health risk, and thus

supports management decisions at a lower risk of liability [Maxwell et al., 1999]. For the trade-

off between uncertainties from site investigation and health related parameters, see de Barros and

Rubin [2008]; de Barros et al. [2009] and Chapters 2-3 of this dissertation.

4.5.2 Flow and Transport Configuration

For simplicity, but not a limitation to the framework, we limit our solute transport problem

to the late-time concentration and the arrival time down-gradient of a continuous line source in a

depth-integrated 2D setting, and consider a point-like sensitive location. Depth-integrated steady-

state groundwater flow is described by:
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∇ · [T (x)∇h] = 0 , (4.14)

where T
[
L2/t

]
is locally isotropic transmissivity and h [L] is hydraulic head. The space coordinates

are represented by x = (x1, x2). Boundary conditions are specified later. For the steady-state

concentration, we use

v · ∇c−∇ · (Dd∇c) = 0 , (4.15)

where c
[
M/L3

]
is concentration, v =q/ne is velocity, q is the Darcy specific discharge, ne is

porosity, and Dd

[
L2/t

]
is the pore-scale-dispersion tensor according to Scheidegger [1954]. We

simulate the arrival time t50 using moment-generating equations [Harvey and Gorelick, 1995]:

v · ∇mk −∇ · (Dd∇mk) = kmk−1 , (4.16)

with t50 = m1/m0, where m0 and m1 are the zeroth and first temporal moments of breakthrough

for the related instantaneous release problem, respectively. Cirpka and Kitanidis [2000] discuss the

physical meaning of temporal moments, and exemplary applications of the generating equations can

be found in Cirpka and Nowak [2004]; Nowak and Cirpka [2006].

The physical configuration, domain size, and relevant parameter values are provided in

Table 4.1 and Table 4.2. Boundary conditions are ĥ = 1m and ĥ = 0 m at x1 = 0 m and x1 = 600

m, respectively. Uncontaminated groundwater enters at x1 = 0 m, and the outflow boundary at

x1 = 600 m is unrestricted. The remaining two boundaries at x2 = 0 m and x2 = 200 m are

no-flux boundaries for both flow and transport.

We consider a fixed-concentration source with unit concentration c0 = 1 along a 50

m (≈ 3 integral scales) wide line centered at x1 = 150 m. A sensitive location is located at a
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Numerical domain

domain size [L1, L2] [m] [600, 200]

grid spacing [∆1, ∆2] [m] [2, 0.5]

Transport parameters

head difference ∆h [m] 1

effective porosity ne [−] 0.35

pore-scale dispersivities [α`, αt] [m] [2, 0.25]

diffusion coefficient Dm

[
m2/s

]
10−9

Transversal plume dimension `S [m] 50m

Geostatistical model parameters (prior mean values)

global mean β1 = ln Kg [−] ln
(
10−5

)

trend x1 β2 [−] 0

trend x2 β3 [−] 0

variance σ2
Y [−] 1.00

integral scales [λ1, λ2] [m] [15, 15]

Matrn’s kappa κ [−] 2.50

Measurement error standard deviations

Y ≡ ln K σr,Y [−] 1.00

head h σr,h [m] 0.01

Table 4.1: Parameter values used for the synthetic test cases.
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Dimensionless numbers

Longitudinal travel distance ξ = x1/λ1 [−] 10.00

Transverse offset η = x2/λ2 [−] 0.83

Contaminant source width ζ = `s/λ2 [−] 3.33

Longitudinal Peclet Pe` = λ1/α` [−] 7.50

Transverse Peclet Pet = λ2/αt [−] 60.00

Table 4.2: Dimensionless representation of the relevant parameters used for the synthetic test cases.

longitudinal travel distance of 300 m down-gradient from the source, and transversely offset by 12.5

m (≈ 1 integral scale) relative to the center of the line source. Dimensionless numbers (in terms

of integral scales) for reference are also denoted in Table 4.2. The domain geometry, contaminant

source and the sensitive location are illustrated in Figure (4.2).

4.5.3 Bayesian Geostatistical Setup and Test Cases

Predicting contaminant transport over some distance in heterogeneous formations requires

assumptions on the structure of variability. In the scenario shown here, we assume that a single

geostatistical model applies to the entire domain. For reasons of parsimony, this model is stationary

in cases 1a and 2a, and intrinsic (due to a trend model with uncertain coefficients) in cases 1b

and 2b, see Table 4.3. Cases 1b and 2b are less arbitrary and less subjective in their prior model

assumptions: They do not claim to deterministically know the global mean, trend or the covariance

function in absence of information, i.e., prior to design and data collection.

The remaining assumptions are that a single, domain-wide, intrinsic and multi-Gaussian

geostatistical model can be justified, e.g., because geological maps indicate membership to a single
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Figure 4.2: Illustration of the scenario for known structural parameters. Left: prior mean values of
Y = ln K, corresponding hydraulic heads h and hypothetical plume (late-time concentration c and
arrival time t50). Right: prior standard deviation. Crossed circle: sensitive location. Thick black
line: hypothetical contaminant source. For parameter values, see Table 4.3 for cases 1a and 2a and
Table 4.1. Grey-scale is identical to Figure 4.3 for direct comparison.

geological unit. Less parsimonic descriptions, e.g., different zones covered by different geostatisti-

cal models, can be adopted if necessary. This would increase the number of structural parameters

to be identified and result in different sampling patterns.

We generate random log-transmissivity fields using the Matérn family of covariances plus

a global mean and a linear trend. The two linear trend functions have a spatial mean of zero and

cause a total variation of ±0.5 over the respective length of the domain. Following the Bayesian

rationale in geostatistics, we do not claim to know the parameter values or actual shape of the
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Case Number Objective Assumptions structural uncertainty

1a σ2
c β, θ known none

1b σ2
c β, θ uncertain var

[
β1, β2, β3, σ

2
Y , λ1, λ2, κ

]

= [1, 1, 1, 0.5, 112.5, 112.5, 1.75]

2a σ2
t50 β, θ known none

2b σ2
t50 β, θ uncertain var

[
β1, β2, β3, σ

2
Y , λ1, λ2, κ

]

= [1, 1, 1, 0.5, 112.5, 112.5, 1.75]

Table 4.3: Definition of test cases in our scenario. Objective: the quantity to be minimized by sam-
pling (prediction variance of contaminant concentration or of arrival time at the sensitive location,
respectively). Symbols: β1 [−]: global mean of ln K; β2 and β3 [−]: linear trend parameters; λ1

and λ2 [m]: scale parameters (spatial correlation); κ [−]: shape parameter of the Matrn function.

geostatistical model better than specified by a prior distribution.

Only for cases 1a and 2a, the structural parameters are considered known. For cases 1b

and 2b, their values are uncertain, with squared coefficients of variation CV 2 = 0.5 each. Uncertain

parameters are the global mean value β1, the trend coefficients in x1 and x2 directions (β2 and β3,

respectively), the variance σ2
Y , the scale parameters in x1 and x2 directions (λ1 and λ2, respectively),

and the Matérn shape parameter κ. Their prior mean values and variances are specified in Table 4.1.

For simplicity, we assume prior stochastic independence among the structural parameters and use

Gaussian measurement errors with σ2
r = 1 for measurements of ln T and σ2

r = (0.01m)2 for

hydraulic head.
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4.5.4 Effect of Structural Uncertainty on Prediction Mean and Variance

Figures 4.2 and 4.3 compare prior mean values and standard deviations of Y , h, c and

t50 for the case of known and uncertain structural parameters, respectively. They are obtained from

Monte-Carlo analysis with 16000 realizations each, using the geostatistical settings described in

Section 4.5.3.

Figure 4.3: Illustration of the scenario for uncertain structural parameters. Left: prior mean values
of ln K, corresponding hydraulic heads h and hypothetical plume (late-time concentration c and
arrival time t50). Right: prior standard deviation. Crossed circle: sensitive location. Thick black
line: hypothetical contaminant source. For parameter values, see Table 4.3 for cases 1b and 2b and
Table 4.1. Grey-scale is identical to Figure 4.2 for direct comparison.

The impact of uncertain mean and trend manifests in the form of a prior standard deviation

of logconductivity with values larger than σY = 1 in the center of the domain, with increasing values
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towards the domain boundaries (see Figure 4.3). The standard deviation of h for uncertain structure

is dominated by the uncertain trend in x1 direction, because the trend in x1 controls whether the

main energy loss appears in the first or in the second half of the domain.

Due to structural uncertainty, the standard deviation of concentration in Figure 4.3 also

differs from the one with known structural parameters (Figure 4.2) or from the analytical expressions

for line sources found in the literature [Fiorotto and Caroni, 2002; Caroni and Fiorotto, 2005;

Schwede et al., 2008]. The cited analytical solutions and our Monte-Carlo analysis for known

structure display two distinct lines of high variance along the fringes of the plume. Structural

uncertainty mainly increases the concentration variance along the center line of the plume, filling

the space between those two lines. The explanation is that macro-dispersion and the approach rate

to ergodicity become uncertain when the variance, integral scales and anisotropy are uncertain. The

affected area extends from the source to far beyond the sensitive location. Results from different

Monte-Carlo analyses (not shown here) indicate that the global trend functions have almost no

impact on concentration variance.

With uncertain structure, the standard deviation for arrival time explodes by a factor of

roughly ten; this can be traced back to the uncertain global mean of Y = ln K, which dictates the

average velocity. Variance, integral scales and anisotropy have an impact on large-scale effective

hydraulic conductivity [Zhang, 2002; Rubin, 2003], so that uncertain covariance parameters increase

the uncertainty of arrival time. The obtained arrival time statistics and their dependence on travel

distance are in agreement with the findings of Rubin and Dagan [1992].
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4.6 Results: Near-Optimal Sampling Patterns with Uncertain Struc-

tural Parameters

In this section, we present the sampling patterns resulting from Bayesian Geostatistical

Design, considering the structural parameters β and θ as uncertain. The main steps of analysis are:

1. Find a near-optimal design using the techniques described in Section 4.4;

2. Generate a respective synthetic data set for the suggested sampling pattern by unconditional

random simulation of an aquifer.

3. With the sampled synthetic data from item 2 at locations determined by item 1, we compute

the conditional ensemble statistics (e.g. mean and variance spatial maps for concentration and

arrival times) for illustration using the Kalman Ensemble Generator by Nowak [2009b];

4. Steps 1-3 are repeated for both objectives defined in Section 4.5.1.

Results in the section are given only for cases with uncertain structural parameters (cases 1b and 2b

in Table 4.3). Cases 1a and 2a and deeper discussion of the results will follow in the subsequent

section, which analyze the relation between structural uncertainty and sampling design.

Figure 4.4 depicts spatial maps of logconductivity and the corresponding heads, concen-

trations and arrival times, obtained from unconditional random simulation with random structural

parameters (see Table 4.4). We use these values to represent the true aquifer. We will read values

of lnK and h at the near-optimal sampling locations and add random measurement error to obtain

synthetic data. This way, we can compare the conditional results to fully known reference fields

of ln K, hydraulic heads, concentrations and arrival times, and to the random values of structural

parameters used for generation.
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Figure 4.4: Random simulation used to obtain synthetic measurement values: a realization of
Y = lnK and corresponding simulated hydraulic heads, late-time concentration and arrival time.
Crossed circle: sensitive location. Thick black line: hypothetical contaminant source. For parameter
values, see Tables 4.1, 4.3 and 4.4.

4.6.1 Sampling Patterns Optimized for Predicting concentration (Case 1b)

First, we present the results for case 1b (see Table 4.3): all structural parameters consid-

ered in our geostatistical model are uncertain, and we optimize the sampling pattern for optimal

prediction of late-time concentration at the sensitive location. The resulting sampling pattern is

shown in Figure 4.5. The figure also shows the conditional mean (left column) and standard devia-

tions (right column) after applying the design and using the synthetic measurement values obtained

from the random simulation shown in Figure 4.4.
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Figure 4.5: Results for case 1b. Left: conditional mean of lnK, hydraulic heads h, and late-
time concentration c and arrival time t50 of hypothetical plume. Right: corresponding conditional
standard deviations. Crossed circle: sensitive location. Solid white circles: near-optimal sampling
locations (Y = ln K and head measurements). Thick black line: hypothetical contaminant source.
For parameter values, see Tables 4.1 and 4.3.

In principle, the original non-Bayesian prediction purpose leads to information needs in

certain regions of the domain, where a certain function of the cross-covariance between measurable

quantities and the prediction goal is highest [e.g., Cirpka et al., 2004; Herrera and Pinder, 2005;

Zhang et al., 2005; Nowak, 2009a]. At the same time, the Bayesian approach requires a diversifica-

tion of sampled lag distances in order to reduce structural uncertainty. Hence, the sampling pattern

found for case 1b is in essence similar to the one found by McKinney and Loucks [1992], with

small modifications due to structural uncertainty (see Section 4.7.2). Case 2b (see Section 4.6.2)
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will provide an example where structural uncertainty leads to major modifications due to structural

uncertainty. The current sampling pattern is asymmetrical because the environmental target is not

aligned with the center of the contaminant source. All sampling locations fall into two groups, and

each group provides a specific set of information:

1. Samples in and around the source.

2. Measurements flanking the average migration pattern of the hypothetical plume.

The contribution of the first group is to identify the release conditions. The most important

factor is the actual volumetric flow through the source area. It substantially affects the total mass

flux of contaminant leaving the source, and the resulting width and fate of the plume further down-

gradient:

If the source is in a high volumetric flow region, larger mass flux will leave the source.

Also, the plume will widen once if it re-enters medium or low volumetric flow regions and the

streamlines diverge. If a situation like this happens, the chance of a wider plume to hit the sensitive

location is higher than average. If the source is in a low volumetric flow region, a smaller mass flux

leaves the source area, and the plume becomes thinner if it re-enters medium or high volumetric flow

regions. In this case, the probability to hit the sensitive location is lower than average. Additionally,

in such thin plumes (relative to the heterogeneity length scale), transverse hydrodynamic dispersion

leads to a rapid dilution of peak concentrations at the plume’s center line by mixing with background

water, leading to a quick dissipation of peak concentrations. This is in agreement with theoretical

derivations in the literature [Fiorotto and Caroni, 2002].

In summary, if the contaminant source is at a high volumetric flow zone, this will lead

to larger levels of expected contaminant concentration further downstream, while low volumetric
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flow zone, contaminant sources lead to much smaller expected levels of contamination. A parallel

Monte-Carlo study (results not shown here) showed that up to 50% of concentration variance could

be attributed to the volumetric flux through the source area. The K values within the source zone

can be identified both from conductivity samples in the actual source zone, and from hydraulic heads

measured around the zone. The latter help to detect focusing or divergence of flow caused by high

or low volumetric flow areas, respectively. Thus, sampling locations even upstream or far beside the

source are informative for downstream concentrations, leading to the sampling locations scattered

around the source in Figure 4.5. In addition, it known that concentration variance is largest at

early travel distances [Fiorotto and Caroni, 2002]. Due to the large concentration variance at early

travel distances (and the fact that we are minimizing concentration variance), there is a tendency

to place the samples in those locations near the source. With increasing travel times (or travel

distances), dispersion starts to have a more significant role thus contributing towards concentration

variance destruction and smoothing out the concentration variability (see works of Fiorotto and

Caroni [2002] and Caroni and Fiorotto [2005]) .

The contribution of the second group of measurements is to identify the macroscopic

transport direction through transverse gradients that deflect the plume from its expected mean tra-

jectory. In other words, they convey information whether the plume is bypassing or directly hitting

the sensitive location. Small-scale fluctuations are important only when they appear close to the

sensitive location, while large-scale meandering is important even at a distance from the sensitive

location. This explains why the two rows of samples flanking the expected plume trajectory draw

closer to the plume’s center in the vicinity of sensitive location. The integral impact of small-

scale fluctuations further upstream is predicted sufficiently well in a stochastic sense by knowing
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the structural parameters. In addition to this, measurements are located at the supposed fringe of

the plume since uncertainty is highest at those locations. This intuition is in agreement with the

theoretical derivation found in Rubin [1991]

For the current objective function, the area within the expected plume trajectory turns out

to be least significant. Similar phenomena are common to studies that optimize sampling patterns

to predict contaminant motion prior to release. For a scenario similar to ours but without structural

uncertainty, McKinney and Loucks [1992] also found that optimal design patterns focus to a large

degree on the direct vicinity of the source. A comparable situation occurred in the study of Cirpka

et al. [2004], who investigated optimal placement of hydraulic measurements for the hydraulic

design of funnel-and-gate systems. They found that the most useful sampling locations are at the

corners of the funnel, because these locations inform best on the distribution of total mass fluxes in

the funnel-and-gate control plane.

The availability of different data types is a second factor that influences sampling patterns,

not less important than the choice of prediction objective. In our case study, the contamination has

not yet occurred, so that concentration measurements are not available. This changes when monitor-

ing contaminations that have already occurred, and concentration data are available as measurement

types. In studies on optimal plume monitoring, for example, the resulting sampling pattern typically

tries to determine the current outline of the plume, i.e., find its fringes and its current front [e.g.,

Criminisi et al., 1997; Herrera and Pinder, 2005; Wu et al., 2005; Zhang et al., 2005].

Although the current study does not focus on the merits of conditional simulation in geo-

statistical inverse problems, it is worth while to compare the synthetic reality (see Figure 4.4) with

the resulting conditional statistics (Figure 4.5). The global mean and trend of conductivity have
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been captured well. In the synthetic example, the contaminant source happens to be in an area of

slow flow, such that the bounding streamlines converge down-gradient of the source, leading to a

very narrow plume with peak concentrations prevailing only over a short travel distance (see Fig-

ure 4.5, left). This effect has been captured by the dense cluster of samples around the source, so

that the squeezing motion of the plume and the relatively short persistence of the c = 0.5 isoline is

reflected in the conditional mean values. The large-scale features of the flow field have also been

captured. In other randomly simulated reference fields (not shown here), the plume actually by-

passed the sensitive location north or south of it. In the current example, the conditional ensemble

mean plume is accurately hitting the sensitive location, with its center line passing only slightly

south of the sensitive location.

The measurements convey sufficient information to reduce the uncertainty of hydraulic

heads to almost zero between the source and the sensitive location. In combination, this leads to

a significantly reduced prediction uncertainty of concentration up-gradient of and at the sensitive

location. Also, the uncertainty of structural parameters is reduced by conditioning. At the transition

towards known structural parameters, the concentration variance starts to exhibit the two distinct

lines along the fringes of the plume. The actual reduction of concentration variance at the sensitive

location is discussed in Section 4.7.1.

4.6.2 Sampling Patterns Optimized for Predicting Arrival Time (Case 2b)

In this section, we briefly repeat the above analysis for the design objective of minimal

prediction variance of arrival time t50 at the sensitive location (case 2b) for later comparison to the

previous results (case 1b). The main aspect of comparison will be the different impact of structural

uncertainty onto designs from different objectives. The results for case 2b also illustrate that a
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design which is optimal under one specific prediction objective (2b) will not necessarily perform

well under a different objective (1b). If desired, multi-objective optimal design [e.g., Müller, 2007]

may offer suitable situation-specific generalizations or compromises.

Figure 4.6: Results for case 2b. Left: conditional mean of Y = lnK, hydraulic heads h, and late-
time concentration c and arrival time t50 of hypothetical plume. Right: corresponding conditional
standard deviations. Crossed circle: sensitive location. Solid white circles: near-optimal sampling
locations (lnK and head measurements). Thick black line: hypothetical contaminant source. For
parameter values, see Tables 4.1 and 4.3.

Figure 4.6 shows the results for case 2b, i.e. the near-optimal sampling pattern and the

conditional mean (left column) and standard deviations (right column). The synthetic measurement

values for conditioning are taken from the same random simulation as before (Figure 4.4). The

main sampling effort goes to the area between the source and the sensitive location. This is because
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arrival time is an integral outcome of the transport velocity along the entire distance. As shown later,

the seemingly random scattering of measurements within and outside the area between source and

sensitive location mainly addresses structural uncertainty. Some samples are scattered throughout

the domain for better identification of the global mean and trend coefficients. Comparison of the

conditional standard deviation between case 1b and 2b (Figures 4.5 and 4.6, respectively) shows

that the pattern for case 1b is better in reducing the uncertainty of concentration, while pattern 2b

performs better in reducing the uncertainty of arrival time.

4.7 Discussion

This section discusses the impact of added samples on the prediction variance, the reduc-

tion of structural uncertainty through sampling (model identification), and the impact of structural

uncertainty on design patterns. Whenever applicable, the links between observed results and the

four guidelines described in the introduction of this chapter will be given.

4.7.1 Effect of Sampling on Prediction Variance

How well did the near-optimal sampling patterns reduce the prediction variance of con-

centration? The design criterion, equation (4.12) promised (in the expected sense) that the near-

optimal sampling patterns would reduce the prediction variances from σ2
c = 0.0329 to σ2

c = 0.0215

for late-time concentration, and from σ2
t50 = 2466.4 to σ2

t50 = 1192.7 for arrival time. σ2
c is

dimensionless because we used c0 = 1[−] for generality.

An important caveat about expected prediction variances, such as equation (4.9), lies in

their nature as expected value over yet unobserved data values. Therefore, actual prediction vari-
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ances after collecting the data may of course differ from their expected values. Feyen and Gorelick

[2005] discuss this issue within the context of expected monetary data worth. In addition, the

Bayesian geostatistical framework averages over uncertain structural parameters that will later be

updated with yet unobserved data. Using the synthetic data set, the near-optimal designs reduced

the variances from σ2
c = 0.0585 to σ2

c = 0.0204 and from σ2
t50 = 2466.4 to σ2

t50 = 41.121 accord-

ing to the conditional ensemble statistics. In our example, the reduction in variance is higher than

expected mainly because the variance of Y = ln K smaller than its expected value.
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Figure 4.7: (a): reduction of prediction variance with increasing number of samples, normalized
to the initial prediction variance. Upper curve set (“total”, thick lines) is the expected prediction
variance of c (solid) and t50 (dashed) according to Eq. (4.12). Lower set of curves (“Bayesian part”,
thin lines) is only the second term of Eq. (4.12). (b): relative entropy of structural parameters β
and θ with increasing number of samples, similar to the Information Yield Curves according to
de Barros et al. [2009].

Figure 4.7a (total) shows the expected prediction variance of concentration according

to equation (4.12), recorded during the sequential placement of near-optimal sampling locations.

Later modifications during to the exchange stage lead to rather minute changes in the patterns, and

improved the expected prediction variance typically below one percent.
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Across all cases, the planned sampling at 24 borehole locations reduce prediction uncer-

tainties to between 50 and 70 percent of the initial uncertainty. The most effective samples are,

of course, the first few ones that occupy the most informative locations. Samples placed later are

displaced to less informative locations or suffer from redundancy of information if placed close by.

The shape of the curves may suggest a residual asymptotic value of prediction variance that cannot

be eliminated. This is indeed the case for imperfect measurements: even when exhaustively sam-

pling the entire domain, the erroneous character of observation would still prevent a deterministic

description of the system. Figure 4.7b will be addressed in section 4.7.3

4.7.2 Effect of Structural Uncertainty on Sampling Patterns

To illustrate the impact of structural uncertainty on near-optimal designs, we repeated the

same analysis as above, but using known structural parameters this time. We then compare the

resulting sampling patterns in Figure 4.8 (left column) and the respective sampled lag distances

(Figure 4.8, right column).

The Bayesian approach to structural uncertainty honors the need for model identification.

Geostatistical model identification generally leads to a diversification of sampled lag distances [Dig-

gle and Lophaven, 2006; Müller, 2007]. The structural parameters θ =
[
σ2

Y , λ1, λ2, κ
]

require lag

distances where they have the strongest impact on the covariance function (Figure 4.1). This in-

formation need appears in equation (4.12) as the derivatives of covariance functions with respect to

structural parameters. For the global mean and variance, uncorrelated samples at great spacing are

best, while covariance shape and scale additionally require a variety of low- to intermediate-range

lags [Bogaert and Russo, 1999]. For the trend parameters, the most sensitive locations are close

to the domain boundaries and corners, where the trend functions X have the largest impact on the
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Figure 4.8: Left: Near-optimal design patterns for cases 1a-2b and a regular sampling grid. Right:
respective sampled lag distances. Crossed circles (left): sensitive location. Solid white circles: 24
sampling locations; log-conductivity and hydraulic head measured jointly. Thick black line: hypo-
thetical contaminant source. Grey-scale background: Maps of expected data worth (here: percent
reduction of Bayesian predictive variance), evaluated before the first sample. Black dots (right):
sampled lag distances. Dot area increases with multiple sampling of the same lag. Zero lag is not
shown.
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expected value of Y = lnK.

We first compare cases 1a and 1b, i.e., at the patterns optimized for minimal concentration

variance. The pattern for case 1a (with known structural parameters) does already offer a variety of

lag distances, so that the patterns in case 1a and 1b do not differ much. Minor changes include a

better coverage of long lag distances, which help to better identify the trend components.

This is drastically different between cases 2a and 2b. The pattern for case 2a is extremely

narrow in the x2-direction, and therefore does not support inference of the transverse trend or the

transverse integral scale. Also, the samples are highly correlated due to their proximity along a

single line, so that identification of the mean and variance are compromised. For these reasons, the

pattern for case 2b is substantially different, offering a much wider range of lag distances for better

identification of covariance parameters, and samples closer to the corners of the domain for better

identification of the trend coefficients.

4.7.3 Effect of Sampling on Structural Uncertainty

The randomly generated structural parameters used to generate the synthetic reality, see

Figure 4.4, are provided in Table 4.4. The table also provides prior mean values and posterior

mean values after conditioning to the synthetic data from case 1b according to Eq. (4.13). Given

the relatively small number of measurements and their level of measurement error, most structural

parameters have been estimated very well.

The right half of Figure (4.7b) shows how structural uncertainty (measured by informa-

tion entropy) decreases with increasing number of samples placed. We approximate the entropy
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difference by [Nowak, 2009a]:

∆E (β, θ) = det
[
Cβθ|yC

−1
βθ

] 1
d (4.17)

where Cβθ|y is the joint conditional covariance matrix of β and θ, Cβθ is its prior version, and d is

the total number of structural parameters. Apart from a sign flip, the same curves are a variation of

the so-called Information Yield Curves by de Barros et al. [2009] (see details in Chapter 3 of the cur-

rent dissertation). These curves illustrate how Bayesian Geostatistical Design considers and utilizes

the potential of planned data to narrow down structural uncertainty and identify the geostatistical

model (guideline 2).

The Information Yield Curves in Figure (4.7b) are less smooth than the prediction vari-

ance curves in Figure (4.7a), because model identification is not the primary or ultimate goal of

Bayesian geostatistical design. The ultimate goal is confident prediction (here measured by predic-

tion variance), and model identification is merely an implicit sub-goal to gain prediction confidence.

Eq. (4.9) contains this sub-goal in a natural manner, and hence does not require a user-defined (and

hence subjective) ranking between prediction and model identification (see guideline 3 in the intro-

duction).

4.7.4 Cross-Case Validation, Robustness and Regular Sampling Grid

As final validation of design robustness, each near-optimal design pattern is applied to

the conditions of all other test cases. We then scaled all performances (reduction of prediction

variance) by the performance of the pattern that was designed for each specific case. This yields the

performance indices summarized in Table 4.5. A pattern performing at 50%, for example, reduces

the prediction variance only half as good as the pattern designed for the respective case.
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Parameter prior mean synthetic posterior mean

(and 95% CI) values (and 95% CI)

global mean β1 [−] -9.32 (± 2 ) -9.98 -9.50 (± 0.14)

trend x1 β2 [−] 0 (± 2 ) +2.16 +2.24 (± 0.23)

trend x2 β3 [−] 0 (± 2 ) -1.11 -0.39 (± 0.93)

variance σ2
Y [−] 1.00 (± 1.41) 0.62 0.71 (± 0.53)

integral scale λ1 λ1 [m] 15.00 (±21.21) 21.53 21.49 (±15.00)

integral scale λ2 λ2 [m] 15.00 (±21.21) 29.63 24.92 (±15.06)

shape parameter κ [−] 2.50 (± 3.53) 3.89 2.12 (± 3.36)

Table 4.4: Comparison of structural parameters: prior mean, synthetic reality and posterior mean
values identified with synthetic data from case 1b. 95% confidence intervals are estimated from two
times the posterior standard deviation, assuming a Gaussian distribution.

Of course, each sampling pattern performs best when applying it to the respective case

it was designed for, surpassing all other patterns. In the cross-comparison, pattern 1b outper-

forms pattern 1a when applied to the respective other test case (see 4.5, first two rows). In other

words, the under-achievements when designing for structural uncertainty are smaller than the under-

achievements when falsely pretending a known structure during the design procedure. Quite con-

trarily, pattern 2a outperforms pattern 2b. The reason is that pattern 2b is adapted to the high impact

of structural uncertainty onto the prediction objective, and is almost dominated by the requirements

of model identification. If the geostatistical model is known (as in case 2a), most of the sampling

effort of pattern 2b is spent uselessly on the diversification of lag distances. To obtain designs that

are primarily robust under variation of geostatistical structure, a different objective function would

have to be used, where averaging over structural parameters is performed, but all model identifica-
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tion terms are omitted.

Section 4.5.4 indicated that some structural parameters do not contribute to one or both of

the prediction variances discussed here. One may now ask why to consider a seemingly irrelevant

geostatistical parameter as uncertain. A discussion on the role of trend parameters in the prediction

of concentration is given as an example. The trends add to the variability of both log-conductivity

and hydraulic head. Without properly de-trended data, the data values would falsely be interpreted

towards a larger overall variance σ2
Y , resulting in false interpretation of the data. In similar fashions,

any unjustified assumption or mis-specification of geostatistical structure may introduce spurious

error into data interpretation, and hence into either spatial interpolation or into the estimation of

other structural parameters. In conclusion, even seemingly irrelevant structural parameters should

be accounted for, thus providing robustness against mis-specified geostatistical models (guideline 4

listed in the introduction).

For additional illustration, reference and comparison to simplistic designs, we also tested

a regular sampling grid with 24 sampling locations placed on a 8×3 grid with 40m×36m distance in

x1 and x2 directions, centered between the source and target location, and aligned with the center of

the source (Figure 4.8, bottom row). The regular grid is clearly defeated in all cases. Neither can it

provide detailed information on the release conditions, nor does it cover the variety of lag distances

to identify the structural parameters, nor does it focus on the process-specific most sensitive regions

of the domain.



130

case 1a case 1b case 2a case 2b

pattern 1a 100% 60%

pattern 1b 95% 100%

pattern 2a 100% 98%

pattern 2b 68% 100%

regular grid 59% 75% 48% 96%

Table 4.5: Performance index of different patterns in different cases

4.8 Summary and Conclusions

This study transferred the concept of Bayesian Geostatistical Design to geostatistical

inverse problems. Bayesian Geostatistical Design was introduced just recently by Diggle and

Lophaven [2006]. Like other geostatistical design techniques, it optimizes site investigation or mon-

itoring plans (called designs) for contaminated sites, while accounting for heterogeneous subsurface

parameters as geostatistical random space functions. The optimal design is defined to achieve a min-

imal prediction uncertainty with respect to a given prediction objective.

In contrast to conventional techniques, Bayesian Geostatistical Design allows for uncer-

tainties in the geostatistical model itself. Uncertainties in the geostatistical model may include

uncertain mean values, uncertain trend coefficients, uncertain choices of covariance models, and

uncertain parameters within the covariance model, all summarized under the term of structural un-

certainty.

In realistic situations of site investigation, initial information on geostatistical model pa-

rameters such as the variance or integral scale of logconductivity is extremely scarce. This makes it
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illegitimate to assume fixed values a priori, and forces to treat them as uncertain. Otherwise, overly

optimistic small levels of uncertainty would be specified, and the design would be optimized under

unjustified (and possible false) assumptions. It is argued that, under these premises, an adequate

optimal design technique should fulfill four guidelines:

1. Uncertain structural parameters have a significant impact on prediction uncertainty. Their

uncertainty must be assessed and accounted for accurately.

2. Sampling helps to reduce structural uncertainty. This potential has to be accounted for and

utilized in finding a sampling design.

3. The objective of reducing structural uncertainty (i.e., geostatistical model identification) should

be ranked versus the primary design objective in an optimal and natural manner.

4. Designs are sensitive to structural assumptions. Therefore, optimal designs should be robust

with respect to estimation errors in structural parameters.

It is shown that Bayesian Geostatistical Design indeed reduces the number or a priori assumptions

on geostatistical structure, and also fulfills the above four guidelines. The only remaining assump-

tions are that the variability of the site can be described by a reasonably parametric geostatistical

model (regardless of its parameter values). However, several different parametric models may cover

different parts of the domain, and there is little restriction to the complexity of the parametric mod-

els.

A key point is minimum arbitrariness when choosing a covariance model prior to sam-

pling. To this end, we used the Matérn family of geostatistical covariance models. It offers an

additional shape parameter, and includes the exponential, Whittle and Gaussian covariance function
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as special cases. This way, as suggested by Zhang and Rubin [2009] and indicated earlier by [Feyen

et al., 2003], the problem of model selection becomes a problem of parameter estimation, with a

wide range of methods available. We treat the shape parameter as yet another uncertain structural

parameter, providing seamless integration of model uncertainty into the optimal design framework.

This approach is called Continuous Bayesian Model Averaging because it is the limiting case of

Bayesian Model Averaging over a continuous parametrized spectrum of models.

In a series of test cases, we demonstrated how structural uncertainty influences the optimal

design. The test scenario featured the placement of 24 co-located hydraulic head and logconductiv-

ity measurements, optimized for minimal prediction variance of (1) contaminant concentration and

(2) arrival time of contamination at an environmentally sensitive location. Structural uncertainty

was represented by an uncertain global mean, uncertain coefficients of a linear trend model, and

the Matérn covariance function with uncertain shape, variance and anisotropic integral scales. A

variation of the test cases considered the structural parameters to be known for comparison.

Only a few samples placed optimally were sufficient to largely eliminate the additional

uncertainty stemming from structural uncertainty. The list of uncertain structural parameters was

shown to leave a distinct diversification in the fingerprint of the spatial pattern of the resulting

optimal sampling layouts. The required diversification showed most clearly in the lag distances

covered by the individual sampling patterns. The results of the test case positively confirmed that

Bayesian Geostatistical Design fulfills our four guidelines listed above.

Within the risk assessment application context, Bayesian Geostatistical Design aligns well

with the Triad principle of site investigation suggested by the USEPA [Crumbling, 2001]. Triad is an

approach to decision-making for contaminated sites that offers a technically defensible methodology
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for managing decision uncertainty by incorporating characterization tools and strategies. The Triad

refers to three primary components: systematic planning, dynamic work strategies and real-time

measurement systems. The Triad principle argues that information from ongoing site investigation

should provide immediate feedback to adjust the sampling campaign in real-time, by continuously

updating the site’s conceptual model during the ongoing investigation effort. Bayesian Geostatistical

Design extends the Triad principle from mere hydrogeological conceptualization to geostatistical

conceptualization.

It is important to emphasize that the Bayesian Geostatistical Design framework is not in

any way limited to the implementational choices taken in our study. The implementation used a

first-order approximation for structural uncertainty, Ensemble Kalman Filters, and a sequential ex-

change optimization algorithm, yielding at least Pareto optimal designs. We are aware of the limited

range of validity of first-order approximations and generality is not claimed within the results ob-

tained in the illustrative test case. With willingness to accept substantially increased computational

costs, our approximations can be replaced with brute-force Monte-Carlo or particle filter techniques,

combined with genetic or simulated annealing optimization algorithms.

Notation

Symbols and their respective units:

b: Depth of the aquifer [L]

Bk: Modified Bessel function of the third kind of order k

c: Resident concentration [M/L3]

c̃: Bayesian mean of the prediction goal (concentration or arrival time)
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ĉ: Conditional prediction mean

CY , CY Y , C: Spatial covariance of the log-conductivity

Css, Cββ : Covariance matrix

CV : Coefficient of variation[-]

Dd: Dispersion tensor [L2/t]

Dm: Molecular diffusion [L2/t]

d: Number of structural parameters in the information entropy equation, see Eq. (4.17)

Ea[·]: Expected value operator over the distribution of a random variable a

F: Fisher information

fy(s): Process model (such as groundwater flow equation)

fc(s): Process model (such as transport equation)

Gyy: Covariance matrix

h, ĥ: Hydraulic head [L]

Hc: Sensitivity matrix

Ki: Hydraulic conductivity at a specific location xi [L/t]

KG: Geometric mean of the hydraulic conductivity [L/t]

K(x): Hydraulic conductivity at a generic location x [L/t]

`: Lag distance [-]

`S : Dimension of the contaminant cloud in the x2-direction [L]

L1, L2: Domain size [L]

mY mean of the log conductivity [-]

mk: kth temporal moment
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N : Number of locations sampled and number of samples [-]

ns: Vector length [-]

ne: Porosity [-]

p(·): Probability density function (PDF)

p̃(·): Bayesian probability density function (PDF)

p: Number of trend functions

Pe`, Pet: Péclet number in longitudinal and transverse directions

s: Vector of logconductivity

T : Transmissivity [L2/t]

t50: Arrival time derived from the moment generating equations [t]

v: Velocity vector with components Vi for i = 1 and 2 [L/t]

Va[·]: Variance operator over the distribution of a random variable a

X: ns × p matrix

x: Cartesian coordinate system [L]

xm: Measurement location coordinates [L]

y, yo: Vector of measurements at locations xm

Y : Logarithm of the hydraulic conductivity (ln K)

α: Ratio between entropies [-]

α`, αt: Dispersivities in the x1 and x2 direction [L2]

β: Trend coefficients

β∗: Expected value of the trend coefficients

δ: Dirac delta
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∆i: Grid size in the ith [L]

∆h: Head difference [-]

∆E: Entropy difference [-]

εr Measurement error

εs Zero-mean fluctuations

Γ(·): Gamma function

λi: Correlation heterogeneity length of the aquifer in the ith direction [L]

φ: Task-specific measure of prediction uncertainty

κ: Matérn shape parameter (κ ≥ 0)

σ2
Y : Variance of the logconductivity [-]

σ2
c : Concentration variance [-]

σ2
t50: Arrival time variance [-]

σ2
r : Gaussian measurement error variance [-]

σ̃2
c|y: Increased variance conditional on y (Bayesian variance)

θ: Hydrogeological structural parameter vector

θ̄: Prior mean for structural parameter vector

θ̂: Conditional mean for structural parameter vector

ξ, η: Dimensionless longitudinal and transverse directions (xi/λi)

ζ: Dimensionless source dimension (`s/λ)
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Chapter 5

Summary

An approach to investigate the relative impact of uncertainty reduction from hydrogeolog-

ical and physiological parameters in human health risk estimates is addressed. An important aspect

of the approach used in this dissertation is that it unifies in a single framework all the major sources

of uncertainties within a human health risk context (including parametric and model uncertainty).

The results presented here illustrate the importance of considering uncertainty trade-offs in order

to set priorities towards data acquisition efforts. In addition, it is highlighted how characterization

needs vary within a task-oriented objective. One of the main messages of this work is to show how

subsurface characterization efforts, as well as the design of sampling networks, are dependent on

the prediction goal (say human health risk, concentration estimates or travel times).

In Chapter 2, a simple, yet general approach for addressing relative impacts of uncer-

tainty reduction in human health risk is presented. The stochastic framework presented accounts

for uncertainties and variabilities present in hydrogeology, human behavioral and physiological pa-

rameters. Lagrangian theory was applied to solve flow and transport analytically. Based on the
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Lagrangian formulation, temporal moments of total solute mass flux were obtained. Consequently,

these temporal moments were used to to derive a closed-form CDF for human health risk in terms of

the relevant physical and health-related parameters. The impact of additional measurements of hy-

draulic conductivity on the increased cancer risk CDF was investigated. In addition to this, a single

metric (α) that allows one to investigate trade-offs between sources of uncertainty was introduced.

This metric is based on the concept of information entropy and was applied in a graphical approach

to measure the relative impact of uncertainty reduction from flow physics and physiology.

The results in Chapter 2 show how the effect of uncertainty arising from human physio-

logical parameters decreases as the distance between the contaminant source and the control plane

increases. It was also observed that the impact of hydrogeological parametric uncertainty increases

for larger distances between the control plane and contaminant source. Also, the interplay between

contaminant exposure duration and hydrogeological site characterization was investigated. Results

indicate that hydrogeological site characterization becomes dependent on the time the contaminant

plume takes to cross the control plane if the concentration averaged over the exposure duration pe-

riod is used to evaluate risk CDF, FR(r). Again, this result highlights how characterization needs

should be task-oriented.

Chapter 3 focuses on the significance of flow and transport scales in defining character-

ization needs based on a task-oriented analysis. Again, the relative gain of information in human

health risk was quantified through uncertainty reduction from both physiology and flow physics.

The role of the plume’s dimension proved important in defining characterization needs within the

risk-driven context. Results in Chapter 3 show that uncertainty reduction in human health risk bene-

fits more from hydrogeological site characterization if the contaminant source is small relative to the
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heterogeneity correlation length. The human health risk CDF is less sensitive to measurements of

hydraulic conductivity if the contaminant source increases relative to the heterogeneity correlation

scale. In addition to this, it is highlighted how the value of information not only depends on the

plume’s dimension but also on its interplay with the scale of capture zone induced by the action of

pumping wells. For higher pumping rates (thus larger capture zones), the value of hydrogeological

characterization becomes less dependent of the plume’s dimension.

Chapter 3 also emphasizes how uncertainty reduction in risk may benefit more from

parametric uncertainty reduction from the health component as opposed to hydrogeological if the

plume’s dimension approaches ergodicity. The role of pore-scale dispersion is also addressed. For

high Peclet conditions, plume-size relative to the heterogeneity scale is an important factor to be

considered in defining characterization efforts. The contrary occurs for low Peclet conditions: in-

formation concerning the size of the plume relative to the heterogeneity scale becomes less rele-

vant towards defining subsurface characterization strategies. Analogous observations were obtained

when comparing concentration measured in a well versus the flux-averaged concentration at a con-

trol plane. The manner in which contaminated water is sampled has a strong influence in defining

characterization needs within a risk-based approach as demonstrated in Chapter 3. It was also

shown how different physiological dose-response models have different effects in risk uncertainty

reduction and in defining characterization needs. One of the highlights of Chapter 3 is in extending

the ideas presented in Chapter 2 to construct the concept of comparative information yield curves.

Theoretical, methodological and practical aspects of the comparative information yield curves were

given. For this work, these curves proved useful since it allows one to easily view the relative

contribution of information in risk from the physiological and the hydrogeological component.
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Chapter 4 explores in further detail the role of hydrogeological parametric uncertainty in

reducing concentration and travel time variances at an environmentally sensitive target. The con-

cept of Bayesian Geostatistical Design was transferred to geostatistical inverse problems. It was

shown through a series of test cases how parametric uncertainty within the geostatistical model

influences the optimal design. These results were compared to test cases with no parametric uncer-

tainty. Measurements of head and logconductivity were optimized for minimal prediction variance

of (i) contaminant concentration and (ii) contaminant travel time. In addition, it is highlighted how

different objective functions lead to different sampling design. Furthermore, the Matérn family of

geostatistical covariance models was used since it offers an additional shape parameter. For specific

values of this shape parameter, the Matérn covariance model assumes the form of the classical geo-

statistical models (for example: exponential, Whittle and Gaussian covariance function) commonly

used in the literature, see Chapter 2 of Rubin [2003]. This allowed conversion of the problem of

model selection to a problem of parameter estimation. The shape parameter present in the Matérn

covariance model was treated as yet another uncertain structural parameter. This approach of con-

verting a model selection problem into a parameter selection problem is denoted as Continuous

Bayesian Model Averaging since it is the limiting case of the Bayesian Model Averaging [Hoeting

et al., 1999; Neuman, 2003] over a continuous parameterized spectrum of models. The results in

Chapter 4 show how important it is to account for parametric uncertainty in subsurface character-

ization and how the sampling patterns change drastically depending on the task to be minimized.

Chapter 4 also explains the relevance of applying the Bayesian Geostatistical Design framework in

monitoring contaminated sites and consequently evaluating potential human health risk.
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Appendix A

Second Moment of the Solute Flux

A detailed derivation of the second moment of the solute flux, equation (2.29), is shown.

Let us define a function h(τ) as:

h(τ |Rf , To) = {H[t−Rf τ − to]−H[t−Rf τ − to − To]}. (A1)

Assuming that the injected mass and the release duration are constant, the second moment is given

by:

〈Q2(t, τ |L, ao, To, to, Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0

∫ ∞

0
h(τ |Rf , To)h(τ ′|Rf , To)g2(τ, τ ′|L, ao, a, to, θH , {m})dτdτ ′

(A2)
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Inserting equation (2.28) into (A2) and with the aid of the properties of the Dirac delta, we obtain:

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0

∫ ∞

0
h(τ |Rf , To)h(τ ′|Rf , To)g1(τ ′|L, ao, to, θH , {m})δ(τ − τ ′)dτdτ ′

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0
h(τ |Rf , To)h(τ |Rf , To)g1(τ |L, ao, to, θH , {m})dτ

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0
h2(τ |Rf , To)g1(τ |L, ao, to, θH , {m})dτ. (A3)

Inserting equation (A1) into (A3):

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0
{H[t−Rf τ − to]−H[t−Rf τ − to − To]}2g1(τ |L, ao, to, θH , {m})dτ.

(A4)

Now, we recall the properties of the Heaviside function. Note that since the values H(·) can take

are either 1 or 0, the squared value of the Heaviside function can be neglected and equation (A4)

can be further simplified:

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =

M2
o

T 2
o

∫ ∞

0
{H[t−Rf τ − to]−H[t−Rf τ − to − To]}g1(τ |L, ao, to, θH , {m})dτ,

(A5)

where equation (A5) can be re-written in a more compact manner:
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〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =
M2

o

T 2
o

∫ B

A
g1(τ |L, ao, to, θH , {m}) dτ ′,

with A and B defined in equation (2.25 and 2.26). Expression (A6) can be written in terms of the

travel time cumulative distribution function as in equation (2.29):

〈Q2(t, τ |L, ao, To, to,Mo, Rf , θH , {m})〉 =
M2

o

T 2
o

Gτ (B|L, ao, to, θH , {m})

−M2
o

T 2
o

Gτ (A|L, ao, to, θH , {m}) . (A6)
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Appendix B

Estimating the Probability Density

Function of θH

Given a set Y ≡ {m} consisting of Yi = lnKi measurements from a random field gen-

erator we are able to estimate a PDF for the uncertain parameter (with i=1, . . . , N , where N is the

total number of measurements). From this sample, we obtain the SRF parameters, for example, θH

= {mY , σ2
Y , λ} where mY and σ2

Y are the mean and variance of Y and λ is its correlation length.

We need to infer the distribution of θH given the measurements in Y, f̂H(θH |Y). The procedure

is based on Bayes Theorem:

f̂H(θH |Y) =
fprior(θH)fY (Y|θH)

fY (Y)
, (B1)

where the assumption of a prior PDF, fprior(θH) is needed. Assuming that the PDF fY (Y|θH) is

multivariate Gaussian, we have:

fY (Y|θH) =
1

(2π)N/2‖CYY‖
exp

[
−1

2
(Y −mY )TC−1

YY(Y −mY )
]

, (B2)
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where CYY is the geostatistical correlation model that depends on θH = {mY , σ2
Y , λ} and ‖CYY‖

≡ det(CYY). With equation (B2), the estimated PDF in equation (B1) can be obtained.
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Appendix C

Flow and Transport Formulation and

Numerical Implementation used in

Chapter 3

A two-dimensional depth-averaged, saturated, steady-state flow is considered. The flow

domain is considered bounded and defined by the aquifer’s longitudinal length L and width W . The

equation that governs flow is given as follows:

∇ · [ bK(x)∇h ] =
∑
w

Qwδ(x− xw), (C1)

where b is the average depth of the aquifer, h the hydraulic head, Qw is the pumping rate of the wth

pump well at location xw. We consider no-flow boundary conditions on the transversal direction

(x2) and prescribed pressure head in the longitudinal direction (x1). Flow occurs from the left

to right. Assuming instantaneous linear chemical interactions with the soil particles and that the

chemical, with initial concentration Co, is instantaneously released within the aquifer along a line
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source, we write:

Rf
∂C

∂t
+ V∇C −∇ · [Dd(x)∇C] =

∑
w

CwQw

ne
δ(x− xw), (C2)

with ne being the effective porosity and V is the Eulerian velocity vector obtained through Darcy’s

Law, Rf is the retardation factor, Dd is the dispersion coefficient tensor, C is the concentration

and finally Cw is the concentration at the pumping well. ParFlow was used to solve the flow field

in the aquifer [Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006].

ParFlow is a watershed flow code that uses a multi-grid preconditioned conjugate gradient algo-

rithm to efficiently solve the linear system resulting from the discretization of the flow equation.

The contaminant transport is solved using a Lagrangian particle tracking algorithm with very mini-

mal numerical dispersion and conservation of mass [Maxwell and Kastenberg, 1999; Maxwell et al.,

2007]. This code, called SLIM-FAST, simulates migration of dissolved, neutrally buoyant and re-

active chemical in saturated porous media. To represent concentration and the spatial/temporal

distribution of the contaminant, an explicit Lagrangian Random Walk Particle Method is imple-

mented in the code. SLIM-FAST also benefits from the quasi-analytical formulation presented in

Shafer-Perini and Wilson [1991].
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Appendix D

Maximum Likelihood Estimator used in

Chapter 3

In the case where N measurements of Y = ln K are available, the negative log-likelihood

function for a multivariate normal PDF becomes [Rubin, 2003]:

− lnL(θH |Yi) =
N

2
ln(2π) +

1
2

ln ‖CYY‖+
1
2

N∑

i=1

N∑

j=1

(Yi − 〈Yi〉)(Yj − 〈Yj〉)
CY (xi,xj)

, (D1)

where ‖CYY‖ is the determinant of the variance-covariance matrix of order N by N . CY (xi,xj)

is the spatial covariance model. For our results, we used the case of an exponential isotropic

CY (xi,xj) such that θH = {mY , σ2
Y , λ}. The Maximum Likelihood estimators are those that min-

imize equation D1.
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Appendix E

Derivation for the Linearized fy (s) in

Chapter 4.4

We define a linearized representation for fy (s) in the form of:

y = fy (s) ≈ E [f (s)] + H (s− s̄) , (E1)

where ȳ = E [fy (s)] and s̄ are the mean values of p (y) and p (s), respectively. Within the linearized

framework, the relevant mean values an covariances become:

Gyy (θ) = HGss (θ)HT + R (E2)

ŝ (yo,θ) = Xβ∗ + Gss (θ)HTG−1
yy (θ) (yo − ȳ) (E3)

Gss|y (θ) = Gss (θ)−Gss (θ)HTG−1
yy (θ)HGss (θ) (E4)

Cββ|y =
(
XTHT

yG−1
yyHyX + Cββ

)−1
, (E5)
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where Gyy is the generalized covariance of y, ŝ and Gss|y are the conditional mean and generalized

covariance of s, and Cββ|y is the conditional covariance of β.

Employing a likewise linearized representation of c = fc (s) with coefficient matrix Hc,

the conditional predictive distribution for c becomes:

ĉ (yo, θ) = c̄ + Hc (ŝ (yo, θ)−Xβ∗)

σ2
c|y (θ) = HcGss|y (θ)HT

c . (E6)

Due to linearization, the prediction variances for known θ are independent of data values, and

Eq. (4.9) simplifies to:

Ey

[
σ̃2

c|y
]

= Eθ

[
σ2

c|y (θ)
]

+ Ey

{
Vθ|y [ĉ (y (d) , θ)]

}
. (E7)

Linearization of fy (s) is exact for direct measurements of log K, and overwrites the responsible

rows of H by a sampling matrix [e.g., Fritz et al., 2009, in press]. Dagan [1985] showed analytically

that linearized fy (s) for hydraulic heads is highly accurate for variances of log K up to unity, and

Nowak et al. [2008] demonstrated its reliability for up to σ2
Y = 5 by Monte-Carlo analysis.
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Appendix F

Derivation of Ey

[
σ̃2

c|y (d)
]

given in

Chapter 4.4

We now derive Eq. (4.12) from Eq. (4.11). For simplicity of notation, let ω (θ) ≡ σ2
c|y (θ).

Expanding ω (θ) up to first-order in θ yields:

ω (θ) ≈ ω
(
θ̄
)

+∇θωθ′ , (F1)

where θ̄ = Eθ [θ], θ′ = θ − θ̄ and ∇θω is the row-vector Jacobian of ω evaluated at θ = θ̄. Due

to E [θ′] = 0, the first term in Eq. (4.11) becomes:

Eθ

[
σ2

c|y (θ)
]
≈ σ2

c|y
(
θ̄
)

= HcGss|y
(
θ̄
)
HT

c . (F2)

The second term in Eq. (4.11) is obtained in a similar fashion by setting

c̄ (θ) + κ (θ)y′ ≡ c̄ (θ) + HcGss (θ)HT
c G−1

yy (θ) (y − ȳ)

= ĉ (y (d) , θ) , (F3)
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with y′ = (y − ȳ). κ can be interpreted as the Kalman gain of predicted concentration, and c̄ (θ)

is the ensemble mean concentration given θ, prior to sampling. Now, we expand c̄ (θ) and κ (θ) up

to first order in θ:

c̄ (θ) ≈ c̄
(
θ̄
)

+∇θ c̄θ′ (F4)

κ (θ) ≈ κ
(
θ̄
)

+∇θκθ′ . (F5)

The first-order perturbation of ĉ (y (d) , θ) is

ĉ′ = ∇θ c̄θ′ +∇θκθ′y′ , (F6)

and its variance over the distribution p (θ|y) is (accurate to first order in θ):

Vθ|y [ĉ (y (d) , θ)]

≈ Eθ|y


∑

i

∑

j

θ′iθ
′
j

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi
y′y′T

(
∂κ

∂θj

)T
}



=
∑

i

∑

j

〈
Cθθ|y

〉
ij

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi
y′y′T

(
∂κ

∂θj

)T
}

(F7)

where Cθθ|y is the conditional covariance of θ and 〈·〉 denotes the i, j-the element.

Cθθ|y is independent of actual data values when expressed via the inverse of the Fisher

information F [e.g., Kitanidis and Lane, 1985]:

F = Ey

[(
∂

∂θ
ln p (y|θ)

)T (
∂

∂θ
ln p (y|θ)

)]
. (F8)

In the current context, we assume that the θ has a prior covariance matrix Cθθ, so that the elements

Fij of F are given by [Nowak and Cirpka, 2006]:

Fij =
1
2
Tr

[
∂Gyy

∂θi
G−1

yy

∂Gyy

∂θj
G−1

yy

]
+ eT

i C−1
θθej , (F9)
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where ei is the i-th unit vector. Gyy and its derivatives are evaluated at θ = θ̄.

Now, we take the expected value over p (y) to obtain the second term in Eq. (4.11):

Ey

{
Vθ|y [ĉ (y (d) , θ)]

}

≈
∑

i

∑

j

〈
Cθθ|y

〉
ij

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi
Gyy

(
θ̄
)(

∂κ

∂θj

)T
}

(F10)

Updating the structural parameters once data become available requires the gradient g

[Kitanidis and Lane, 1985]. For the case of prior covariance Cθθ, its entries are [Nowak and

Cirpka, 2006]:

gi =
1
2
Tr

[
∂Gyy

∂θi
G−1

yy

]
− 1

2
(yo − ȳ)T G−1

yy

∂Gyy

∂θj
G−1

yy (yo − ȳ) + eT
i

(
θ − θ̄

)
(F11)


