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= Background

« Upscaling of permeability has been a major area of research;

» |mportant results available for effective conductivity for various
models of spatial variability, various flow regimes and space
dimensionalities;

« Theories are also available for upscaling to the numerical grid-block
scale (length scale of the homogenized domain is comparable to the
scale of heterogeneity);

 Much less work has been done on the transport side, specifically:
* how to assign dispersion coefficients to numerical grid blocks?



Goal of this presentation:

Propose an approach toward a rational design of numerical analysis
of transport which accounts for the various length scales affecting
transport including: scales of heterogeneity, pore-scale dispersivity,
dimensions of the solute plume, numerical grid block dimensions
and travel distances, as well as space dimensionality;

On a more fundamental level: bridge between stochastic concepts
and numerical applications;



A common stochastic approach for
modeling transport: The Concept of
Macrodispersivity
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| ransport in complex geological structure can be analyzed:
multi-scale, hierarchical heterogeneity

Strongly
Multimodal
Hetarogenaity
Sand & gravel
lithofacies (sg)

Mud & diamicton
lithofacies (md)

Frequency

Weakly
Multimodal
Heterogeneity

5t = Trough CB Sand

l:l Sp = Planar CB Sand

Frequency

-o AEET
SR
Boundaries of channel \

e I
"N\ beits 107 z
(Facies assamblages) 0" to10°m i

e
e

?_aj Gp = Planar CB Gravel

\ Boundaries of depositional areas within ! \
channel bells (Facies) |

“~ Boundaries within Facies (bed sats or cosels) | \

Unimodal

c

)

=] Hetarol it
= genaity
@

=

(N

™~ Boundaries of cossts of
cross strata (multiple sets
with the same orientation)

\ Boundaries of sets of
cross strata

In (k)

™\ Individual cross strata

Hierarchical organization of lithofacies and corresponding permeability
Modes (Ritzi et al., Water Resources Research, 40(3), 2004)
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~ Important considerations:

« Concept is limited to modeling plumes that are large with respect to
the scales of heterogeneity (ergodic*), because:

« When plume is ergodic, all variability is local, and its effects can be
modeled deterministically through dispersion coefficients;

* This concept is not useful in numerical applications, where we
usually deal with non-ergodic plumes, and in that case:

« |t is important to capture the large scale spatial variability directly on
the grid;
« *(Dagan, G., JFM, 1991)



Large scale variability of the hydraulic properties
can be identified using GPR
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Detalled Site Characterization and Fine Grid Simulation
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Detailed, high resolution
Spatial distributions
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| Block-scale dispersion tensor |
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High computational cost

Méasures should be taken
to compensate for the wiped-out
variability
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Length-scales

- [.,[, : plume dimensions
< . L : spacing between
o ¢ measurements

A, A, : grid dimensions
. . 24 : smallest length
. < scale reproducible
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Nyquist Theorem: relates between the sampling scale and the
identifiable scales

LARGE PLUME SMALL PLUME
S(k) S(k)
Tr @ ‘ T"trx
11 A 114



“_ =
A =

% Block-scale macrodispersion
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First-order Instantaneous Sorption

ln[Kd (X)] = aY(x)+ W (x)

 Negative correlation between the hydraulic conductivity and the distribution
coefficient is often applicable. Positive correlation is also plausible. We will
consider the extremes:

 (A) perfect positive correlation;

 (B) perfect negative correlation and

* (C) no correlation.



—— Model A
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Model C
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Summary

A theory is presented for modeling the effects of sub-grid scale
variability on solute mixing, using block-scale macrodispersion
coefficients;

The goal is to allow flexibility in numerical grid design without
discounting the effects of the sub-grid (unmodeled) variability, while
at the same time:

Avoiding unnecessary high grid density;
The approach incorporates several concepts:

— Rational treatment of the relationships between the various length
scales involved,

— Nyquist’s Theorem is used to separate between the length scales
affecting mixing and those which affect advection. The outcome is a
Space Random Function;

— Ergodicity: The block-scale macrodispersion coefficients are defined in
the ergodic limit (about 50% larger than the scale of the homogenized
blocks), which allows to treat them as deterministic;



— i — { L { y — — .(’_. <
(‘f 'c-r_' 'c_-r_ {1:_{ { [

References:

Rubin, Y., Applied Stochastic Hydrogeology, Oxford University
Press, 2003;

Rubin, Y., A. Bellin, and A. Lawrence, Water Resources Research,
39(9), 2003;

Bellin, A., A. Lawrence and Y. Rubin, Stochastic Env. Research and
Risk Analysis (SERRA), 18, 31-38, 2004.




