Risk Reduction in Gas

Reservoir Exploration Using
Joint Seismic-EM Inversion
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By Yoram Rubin, G.
Michael Hoversten,
Zhangshuan Hou and
Jinsong Chen, University of
California, Berkeley

A method for identification of gas saturation in deep ocean oil-gas reservoirs, which combines data obtained
from seismic with electromagnetic surveys, is presented. Researchers from the University of California,
Berkeley, and Lawrence Berkeley National Lab test their ideas using synthetic and real-life data from the Troll
Gas Province in the North Sea and prove the potential for significant exploration risk reduction.

shows the bulk resistivity (R, ;) as a

he prediction of reservoir
Tparameters such as gas or

oil saturation or both from
geophysical data is the goal of
most geophysical surveys per-
formed in the context of hydro-
carbon exploration and produc-
tion. Interpretation of geophysical
data is rarely a trivial task, but is

particularly challenging in the
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case of gas exploration.

Current seismic imaging technol-
ogy cannot accurately discriminate
between economic and non-eco-

nomic concentrations of gas. This is

Archies Law:
Q242
prock_(] Sg) ¢ Pbrine

9=0.25,p, . =0.33

function of S,=(1-Sy,) for a reser-

voir having 25% porosity and brine
salinity of 0.07 ppm. The relation-
ship between R, and S, has the
advantage of displaying the steepest
slope in rock bulk resistivity R, ,, in
the S, range from 0.5 to 1.0, where
the division between economic and
non-economic Sy usually occurs.
The means of estimating R,
have recently become available

through the use of electromagnetic
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(EM) sounding systems. Recently,

attention has been focused on the

primarily because of the insensitivity
of acoustic (V) and shear (V)

wave velocities to gas saturation.

1. Reservoir bulk resistivity as a function of gas satu:
Porosity = 25%

use of controlled-source electromag-
netic (CSEM) systems in direct
detection/mapping of hydrocarbon.

According to Gassmann’s equations, a gas sand
with 1% gas saturation can have the same V,/V;
as a commercial accumulation of gas.

In recent years, the focus of oil-related
geophysical exploration has been on using
time-lapse seismic data for predicting
changes in pressure and fluid saturation.
Predictions of changes in pore pressure can
be done when there is only oil saturation (S,)
and water saturation (Sy). The presence of
gas complicates the problem by introducing a
third independent variable, the gas saturation
(Sg). In the case of a reservoir with an oil-
water-gas mix, the determination of gas satu-

ration is inherently non-unique.

Seismic technology can provide two criti-
cal pieces of information needed for the ulti-
mate estimation of gas saturation: the physi-
cal location of the reservoir unit, to within a
few percent of the true values; and the poros-
ity of the reservoir unit.

In contrast to the insensitivity of seismic
attributes such as V,,/V;, AVO slope and inter-
cept or acoustic-shear impedance to gas satu-
ration, the electrical resistivity of reservoir
rocks is highly sensitive to Sg, through the link
to water saturation. This sensitivity can be seen
using Archie’s law, which has been demon-
strated to accurately describe the electrical
resistivity of sedimentary rocks. Figure 1

A marine CSEM system consists of a ship-
towed electric dipole source and a number of
seafloor deployed recording instruments capa-
ble of recording orthogonal electric fields.
During the past few years, a number of con-
tractors have begun offering marine CSEM
data on a commercial basis.

The relative strengths of seismic and
CSEM technologies suggest they can comple-
ment each other. Combining the two types of
data should improve fluid saturation estimates
in a joint inversion, since they provide different
and complementary images of the geology.
This is not a new idea, and studies along this

line were reported, such as Hoversten et al.,
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2003. This article develops a new systematic
approach for application and illustrates the
benefits of joint amplitude vs. angle (AVA)
and CSEM inversion for estimating gas satu-

ration and porosity.

A strategy for marine

natural gas exploration

Several challenges need to be addressed
before joint AVA-CSEM inversion can
become routine: (a) different types of data, as
well as data obtained from different sources,
are characterized by different error levels,
which are not always known prior to the
inversion. Thus, methods are needed for
modeling such errors with minimum bias,
while assigning proper weight to the different
data; (b) deterministic inversion — one which
assumes unknown parameters can be
uniquely defined — is in general an ill-posed
mathematical problem because of non-
uniqueness and instability of the inverse
problem. This in turn suggests that inversion
formulated in a stochastic framework — one
which views the unknown parameters as ran-
dom variables, in a statistical sense — may be
more robust than traditional deterministic
approaches, and must be formulated rigor-
ously; and (c) prior information is available,
in many cases, to constrain the inversion in
reservoirs. Such data may be available, for
example, from geologically similar forma-
tions, but its incorporation into stochastic
inversion requires answering questions such
as what relative weight the prior information
should be assigned compared with direct
measurements, and what would be a rational
approach for incorporating prior information

into a stochastic framework for inversion.

Data used for inversion

Seismic data used for this study are the pre-
stacked seismic time series at several incident
angles along depth, typically representing two-
way travel times. After appropriate seismic pro-
cessing, including amplitude recovery, we will

assume the seismic attenuations in the earth
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above the target interval (the overburden) have
been accounted for and can be neglected in the
seismic modeling. We can choose to invert
seismic V, and V; and density in the zones out-
side the reservoir, and invert gas saturation and
porosity within the reservoir.

Marine EM data used in this study include
the amplitudes and phases of the recorded
electrical field from many receivers on the
seafloor. The EM amplitudes and phases,
along with the applied current and transmit-
ter locations, are recorded as time series,
which are then averaged to produce in-phase
and out-of-phase electric field. Those data
are the responses to the electrical conductiv-
ity in the space that includes seawater, over-
burden above the gas reservoir, gas reservoir

and bedrock below the reservoir.

Inversion approach

Designating the inversion target parameters
as random variables offers a rational way of
modeling the uncertainty because of mea-
surement errors, data scarcity and spatial
variability. We represent the inversion target
parameters by a vector 7 the composition of
which can change between reservoirs, but in
general it contains saturation of various lay-
ers, porosities, resistivities, etc. To account
for parameter uncertainty, 7 is viewed as a
realization of a random vector M which is
characterized by a p-variate probability dis-
tribution function (pdf), f(mm), where p is the
number of parameters in M. Our inversion
approach is based on Bayes’ Theorem

Flm)  f@{mD fimlD,

that identifies f (), known as the posterior
(or a-posteriori) pdf, as a function propor-
tional to the product of a prior (or a-priori)
pdf, f(m|I), and a likelihood function,
f(d|m,I). The symbols to the right of the verti-
cal bar denote information, given or assumed.
The prior pdf, f(7|1), summarizes, in a statisti-
cal form, the information available on the para-
meters vector M prior to the EM and seismic
surveys. It represents the probability of M to

assume the set of values 7, given prior informa-

tion I, consisting of information such as exper-
tise gained in other parts of the reservoir, rele-
vant borehole information, as well as informa-
tion and expertise borrowed from other, geolog-
ically-similar formations. There can be many
physically plausible combinations to #, and
f(m|I) assigns to each of them a different prob-
ability according to how realistic or unrealistic it
is, in light of I This opens the door for subjec-
tivity, which can be detrimental. One of the
challenges in using priors is minimizing the sub-
jectivity associated with its formulation. Our
approach is to select the prior pdf that mini-
mizes the subjectivity using entropy-based mea-
sures of information. We refer to this approach
as minimum relative entropy (MRE). The like-
lihood function, f(a*m,1), represents the prob-
ability of observing the data vector, &, which
includes data obtained from the EM and seismic
survey, given 7z and . It provides the means for
updating the prior pdf with new information
gleaned from #* The likelihood function maps
the prior into the posterior pdf: it assigns larger
probabilities to those 7 that make observing &*
more probable, and smaller probabilities to those
m that make observing &*less probable.

Application I. Synthetic data
To illustrate the performances of the individ-
ual and combined inversion of seismic and
EM data, we constructed a simple model
(Figure 2) from which we generated the syn-
thetic seismic and EM datasets, assuming the
rock properties to be known. The gas satura-
tion values (S,) and porosities (¢) of the layers
are shown from top to bottom, in Table 1.
The synthetic AVA is sampled 80 times at

Table 1. The gas saturation values and
porosities of the layers from top to bottom

Target
Laf/;er Sq 0
1 0.10 0.15
2 0.95 0.25
3 0.40 0.15
4 0.90 0.10
5 0.10 0.05




angle and increasing up to 30% for the
far angle. Similarly, 10% Gaussian noise
was added to the electric fields at the
near offsets, increasing to 30% for the
maximum offset.

Figure 3 (blue lines) shows the results
from a seismic-only inversion. The results
are given in the form of the pdfs of the
target statistics. The mode of a pdf'is the
most likely estimate, and the mean of the
distribution is another acceptable esti-
mate. When an estimate is accompanied

by a widely spread pdf, there is only lim-

Figure 2. This schematic represents the domain

investigated in the synthetic study.

ited confidence in it. On the other hand,

narrower pdfs, with well-defined modes,

indicate high confidence in the estimates.

Figure 3 (blue lines) shows that

porosity estimates are quite accu-
rate, with the associated uncer-

tainty increasing with depth. The

gas saturation estimates, on the
/\ other hand, are poor, as expected.
1

i Results obtained after aug-

menting the seismic data with
EM synthetic data are shown as
green lines in Figure 3. The joint

1 inversion provides better estimates
of gas saturation at all layers.
Although the uncertainty levels

1 for the bottom layers are still not
small, the modes of the pdfs are
close to the true values, thus all

40 5
b jf\ A@
1 1 ]
0 * 00—
0 0.1 0.2 0.3 0 0.5 1
40 20
B 20 A 10
1]
0 * 0 —F
0 0.1 0.2 0.3 0 0.5 1
40 4
= A 2
1 11
0 * 0 *
0 0.1 0.2 0.3 0 0.5
50 4
2 ! 2 f
M) 1
0 ok 0 *
0 0.1 0.2 0.3 0 0.5
50 5
.g. I l<\
1 1
0 * 0=
0 0.1 0.2 0.3 0 0.5
porosity gas saturation

1 gas-rich or water-rich layers are

well identified through the maxi-

Figure 3. This graph shows the estimated porosity and gas
saturation using seismic data only inversion (blue lines) and
Jjoint inversion (green lines). The true values are represented
by red star symbols, and the solid lines represent the pos-
terior probability distribution function obtained from inver-
sion. The dash-dotted lines represent the posterior means.

mum likelihood estimates. As
stated above, up to 30% noise is
introduced into both measure-
ments and forward model

responses, and large predictive

bounds are not unexpected.

2ms for five incident angles. The synthetic
EM data includes the amplitude and phase of
the measured electric field at frequencies 0.25
Hz, 0.75 Hz and 1.25 Hz, for 15 source-
receiver offsets. Gaussian random noise was
added starting with 10% noise for the first

Application Il. Troll field study

In this section, we apply our MRE-based
Bayesian approach to the Troll field site in the
North Sea. At the study site, hydrocarbon-
filled sands occur at a depth of about 1,400m

below sea level. The well log from a nearby
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borehole shows a predominantly oil zone
between 1,544.5-m and 1,557.5-m depth. The
Bayesian model for this application was devel-
oped based on the geometry shown in Figure
4. We divided the reservoir into 16 layers, each
of which having a thickness of 20m. The
unknowns are Sy, Sy, S,, and ¢ for each of these
target layers. For seismic AVA data inversion,
we also consider Vj, Vi and bulk density p at
each of the five layers above and the one layer
below the reservoir as unknowns, with each
layer having a thickness of 20m. For the EM
data inversion, we divided the reservoir over-
burden (including seawater) into 13 layers,
based on resistivity logs from a nearby well,
and considered the electrical conductivity of
each layer as unknown.

In practice, information on the reservoir
parameters is available, for example, in the
form of bounds and/or expectation values
(prior means), which can be obtained from
the site geology or from other sites explored
in this province. With only information
about the bounds, the priors assume uniform
distributions. Given information about the
bounds as well as the prior means, the priors
take the form of truncated exponential distri-
butions, based on MRE theory.

We performed inversions using seismic
AVA data and EM data individually, as well
as a joint inversion using both types of data.
The results shown (figures 5 and 6) are for
AVA-only and joint AVA-EM respectively,
using truncated exponential priors.

By comparing the results from seismic only
inversion (Figure 5) to the joint inversion
(Figure 6), we can see that the joint inversion
improved the predictions of the target para-
meters, leading to much narrower predictive
intervals, especially for the gas saturation
estimates at the bottom layers. The predic-
tions obtained for the water and oil satura-
tions are closer to the well log observations.

Compared with the results generated
using uniform priors, the predictive intervals
of almost all the target parameters are nar-

rower, and the estimated posterior modes are
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Seawater
Estimate o
Estimate (Vp, Vs, P) (overburden)
AVA
Data Target Zone

Estimate (Sq, Su, ¢)

Estimate o

Estimate (Vp, Vs, )
I (under-target)

joint inversion gives predictions
that are generally closer to well
logs and yields narrower pre-
dictive intervals.
M The advantage of formulat-
Data ing the inverse problem in a
stochastic framework is mani-

fested in the statistics of the tar-

get parameters. Instead of the
usual single-valued estimation

. This schematic map shows the inversion

provided by deterministic app-

closer to the well-log values. These results
are expected, since more information is
included when using bounds and means pri-
ors compared with the case where only uni-
form bounds are available.

The seismic and EM observations and the
model responses calculated using the poste-
rior modes of the parameters from joint
inversion are plotted in figures 7 and 8,
respectively. The figures show that the model

responses match the observations well.

Discussion and conclusions

We proposed here an

roaches, we obtain a probability
distribution, which allows computing mean,
mode and confidence intervals and is useful
for a rational evaluation of uncertainty and
risk. Moreover, the MRE-Bayesian frame-
work improves estimation results when
incorporating informative priors.

We made several important assumptions in
the study. We assumed a one-dimensional
layered model can represent the earth. This
assumption may be inappropriate for high
frequency EM datasets at large offsets, since
higher frequency EM responses are more eas-
ily affected by three-dimensional structures

of the earth. For seismic data inversion, we
assumed the effects of multiples and wave-
form spreading can be neglected. We also
assumed the rock physics model parameters
developed from the well logs nearby are true
for our study site. These assumptions can be
relaxed by increasing the complexity of the
seismic and EM models. For example, we can
use one-dimensional elastic seismic calcula-
tion with waveform spreading, mode-conver-
sions and all multiples; or we can consider
quasi-two-dimensional, two-dimensional or
even three-dimensional forward models.

The limitations described above notwith-
standing, we have shown that combining
CSEM with seismic data through joint
inversion significantly reduced the risk of
making an error when trying to identify gas-
rich layers. We continue to pursue this topic.
For
rubin@newton.berkeley.edu <>

more information, please email
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