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Abstract. A stochastic Bayesian approach for combining well logs and geophysical surveys for enhancing subsurface 
characterization is presented. The main challenge we face is in creating the bridge to link between ambiguously related 
geophysical surveys and well data. The second challenge is imposed by the disparity between the scale of the geophysical 
survey and the scale of the well logs. Our approach intends to integrate and transform the well log data to a form where it can 
be updated by the geophysical survey and this tends to be a convoluted process. Our approach starts with generating images 
of the lithology, conditional to well logs. Each lithology image is then used as the basis for generating a series of shaliness 
images, conditional to well logs data. Shaliness images are converted to resistivity images using a site-specific petrophysical 
model relating between shaliness, resistivity and lithology, to create the necessary interface with the crosswell resistivity 
survey. The lithology and resistivity images are then updated using crosswell electromagnetic resistivity surveys. We 
explored the limits of the approach through synthetic surveys of different resolutions and error levels, employing the 
relationships between the geophysical and hydrological attributes which are weak or non-linear or both. The synthetic 
surveys closely mimic the conditions at the LLNL Superfund site. We show that the proposed stochastic Bayesian approach 
improves hydrogeological site characterization even when using low-resolution resistivity surveys. 
 
1 Introduction 
 
Research in the area of site characterization has 
focused mainly on development of inverse 
algorithms [McLaughlin and Townley, 1996; 
Ginn, Cushman, 1990; Yeh, 1986]. While our 
understanding of the problem has improved, the 
problem is generally considered as yet unsolved 
with no fully proven technique, there are clear 
ideas of where the weak points are and what 
remedies might be. Most inverse techniques rely 
on point measurements such as permeability, 
head, concentration, and use geostatistical 
techniques for interpretation and integration of 
different data for subsurface characterization. Few 
works have gone beyond and incorporated 
additional information such as geophysical 
surveys with well log measurements for 
enhancing the quality of subsurface 
characterization measurements (Hubbard and 
Rubin, [2000]). The primary motivation has been 
the recognition that geophysical surveys offer 
unique opportunities for enhancing crosswell 
interpolation, and are particularly promising in 
cases of data scarcity.  
Hyndman et al. [1994] developed an inversion 
algorithm that employs both seismic crosswell 
travel times and solute tracer concentration to 
estimate the inter-well geology and therefore the 
hydraulic parameters. Sheets and Hendricks 
[1995] used regression techniques to build a site-

specific petrophysical relationship between the 
soil water content estimated from borehole 
neutron probes and the bulk electrical 
conductivity of the soil estimated from 
electromagnetic induction surveys. This model 
was then used for mapping the soil water content. 
Daily et al. [1992] conducted an infiltration 
experiment to build a site-specific regression 
model between the resistivity and moisture, and 
showed the potential capability of electrical 
resistivity tomography to monitor capillary 
barriers performance and flow in the vadose 
zone. Doyen [1988] used cokriging to estimate 
porosity from surface seismic data and well logs. 
Cassiani et al. [1998] included seismic 
tomography data and sonic data using a 
geostatistical approach to improve the estimation 
of the hydraulic conductivity. Lucet and Mavko 
[1991] combined crosswell seismic tomography, 
logs and petrophysical relationships between 
porosity, velocity and clay content to estimate 
porosity and lithology. Rubin et al. [1992], and 
Copty and Rubin [1995] used a Bayesian 
approach and maximum likelihood principles to 
combine seismic velocity with sparsely measured 
hydraulic conductivity and pressure for the 
purpose of mapping the spatial distribution of the 
hydraulic conductivity. Hubbard et al. [1997] 
used a similar approach to incorporate the spatial 
distribution of dielectric constant obtained from 
ground penetrating radar to estimate soil 
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saturation and permeability in the vadose zone in 
the case of bimodal spatially distributed hydraulic 
conductivity distribution. Hubbard et al. [1999] 
combined acoustic tomography with borehole data 
to estimate the spatial covariances of the log-
conductivity. More recently, Chen et al. [2001] 
used Bayesian paradigm based on the normal 
linear regression model to estimate the 
permeability from geophysical tomographic data. 
A few observations based on these studies are as 
follows: (i) No universal methods or petrophys ical 
models are available for converting geophysical 
attributes to hydrogeological ones; (ii) The most 
challenging problem is tying well- logging 
measurements to the geophysical surveys. This 
issue involves problems of scale disparity and 
inconsistencies in the methods of data acquisition 
and interpretation, which, sometimes, lead to 
dramatically different results. 
The present paper investigates the use of 
geophysical data and surveys for mapping 
lithology and soil properties in the subsurface 
using a Bayesian approach. The study focuses 
primarily on the issues and problems associated 
with the assimilation of weakly or non- linearly 
correlated data, which are characterized by 
different spatial resolutions, in a geologically 
complex environment. The paper includes 5 
sections. Section 2 introduces the LLNL 
superfund site and presents a geostatistical and a 
petrophysical analysis of the data. Section 3 
outlines in detail our approach for data 
interpretation, principles and application. Section 
4 introduces the synthetic electromagnetic survey, 
and Section 5 discusses Bayesian updating of pre-
simulated lithology and resistivity random fields 
and evaluates the effectiveness of the proposed 
approach. Section 6 summarizes all findings. 
 
2 Site Description, Sources of Data, and 
Geostatistical Analysis 
 
2.1 Lawrence Livermore Superfund Site 
Volatile organic compounds (VOC) were used at 
the LLNL superfund site (Figure 1) as solvents 
when the site was an active Naval Air Force Base 
in the 1940's. Fuel petroleum hydrocarbons 
associated with gasoline spills have also 
contaminated the underlying aquifer. The VOCs 
are mainly Trichloroethylene (TCE), 

Tetrachloroethylene (PCE) and Chloroform 
[Noyes, 1991].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Aerial view of the location of LLNL and the 
complex geological setting in its vicinity. 
 
The site is located in an unconsolidated alluvial 
basin. The hydrogeology of the area is very 
complex, but a considerable amount of 
geological, geophysical, hydraulic and 
geochemical data is available. These data provide 
a unique opportunity to study the relationship 
between hydraulic conductivity and sediment 
texture. Our analysis is focused on the treatment 
facility D (TFD) shown in Figure 2. The 
boreholes used in the present analysis, are 
depicted in Figure 3. The contaminants are 
distributed within a thick, complex sequence of 
unconsolidated alluvial sediments [Blake et al., 
1995]. A hydrostratigraphic analysis has been 
conducted to divide sequence of layers into 
hydrostratigraphic units (HSUs). 
 
 
 
 
 
 
 
 
 
 
 

 
TFD 
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Figure 2: Site map of LLNL showing Hydrostratigraphic 
Units (HSUs) and contoured volatile organic compounds 
(VOCs).  Our analysis is focused on the Treatment Facility 
D  (TFD) shown on the top right-hand side.  
 
2.2 Lithological and Geophysical Raw Data 
We focus our efforts on the cross-section between 
wells 1206-1208-1205-1252-1250-1251-1254 at 
HSU2 (Figure 3a). Spatial statistics are inferred 
from all available data and wells in HSU2. Types 
of data collected along the wells include 
geophysical well log data and lithology. These 
various data are characterized by different vertical 
spatial resolution along the boreholes, varying 
from 3cm to 15cm. Geophysical well log data 
collected at the site include: induction resistivity, 
short and long normal resistivity, spontaneous 
potential, single point resistance, guard resistivity, 
and gamma ray, among others. Lithology logs 
were classified as gravel, clay, sand, silt, and their 
mixtures totaling 16 different lithologies. Because 
we are particularly interested in mapping the high 
and low hydraulic conductivity zones, only two 
main classes will be used: 1) silt, which includes 
all silts, clays and their mixtures, and 2) sand, 
which includes all sands, gravels and their 
mixtures.  
 
 
 
 
 
 
 
 
 
Figure 3. a) Vertical cross-section over HSU2. Vertical dash 
lines represent non-available data. Continuous vertical lines 
represent available data along the wells. b) Vertical cross-
section of the present study over HSU2 and only through 
wells 1206-1208-1205-1252-1250-1251-1254. Distances are 
reported from well 1206 and along the cross-section.  
 
2.3 Geostatistical well logs analysis 
Since the HSUs are not horizontal and are not 
defined by constant thickness (Figure 2), the 
vertical coordinates were normalized by the 
average thickness of the HSU which is ~17m 
(Figure 3b). An indicator semivariogram was used 
to characterize the spatial variability of the 
lithologies based on a binary representation for 
sand and silt. Semivariograms have also been 

used to characterize the spatial variability of 
gamma ray (G) and resistivity (R). The reason 
for presenting the statistics of these 3 variables is 
in the fact they form the basis of our method for 
utilizing the resistivity survey. 
 
2.3.1 Lithology Indicator Semivariograms: 
Adopting an indicator coding of 0 for sands and 
1 for silts, a geostatistical analysis of the 
lithologies spatial distribution was performed. 
Figures 4a-b depict the vertical and horizontal 
indicator semivariograms. The vo lume fractions 
of silts, p, and sands, (1-p), are respectively 0.48 
and 0.52. The sills of the semivariograms are 
0.25, equal to the theoretical value of the 
variance of the population which is p(1-p). The 
theoretical models fitted to the data are 
exponential with a range of 1.5m in the vertical 
direction, and 30m in the horizontal direction. 
 
 
 
 
 
 
 
 
Figure 4: Indicator experimental and theoretical 
semivariograms: a) vertical direction, b) horizontal 
direction. Theoretical semivariograms are exponential. 
 
2.3.2 Resistivity Measurements Analysis: Since a 
crosswell electromagnetic resistivity survey is 
considered at the LLNL site, well log resistivities 
were chosen as the primary means for tying and 
correla ting the tomographic survey with other 
soil properties. Semivariograms of induction 
resistivity, guard resistivity and short and long 
resistivities were investigated; yet well-defined, 
long-range patterns of spatial correlation were 
not identifiable. Despite the apparent lack of 
spatial correlation of the resistivity we found that 
the combination of induction resistivity with 
gamma ray and lithology logs offers an 
opportunity for indirect projection of gamma ray 
and lithology pairs into resistivity. Our choice of 
induction resistivity as the primary cand idate for 
correlation with the resistivity survey is based on 
the excellent quality of the induction log 
measurements at the LLNL. 
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2.3.3 Gamma-Ray Analysis: Gamma ray logs 
measure naturally occurring gamma emissions 
around the borehole. Gamma-ray response 
decreases from shales and clays, to siltstone, to 
sandy siltstone, to sandstones and gravels. 
Conversion of gamma ray measurements to 
shaliness helps to remove inconsistencies in the 
data introduced by using different measurement 
tools and calibration techniques [Serra, 1986]. 
Figures 5a,b depict the vertical and the horizontal 
semi-variograms of the shaliness and the fitted 
models. The best fit was found to be a Gaussian 
model with a nugget equal to 0.011 and ranges of 
2.5m in the vertical direction and 25m in the 
horizontal direction. Integral scales are set to 
1.46m(~1.5m) and 14.43m(~14.5m) in the vertical 
and the horizontal directions. 
 
 
 
 
 
 
 
 
Figure 5: Shaliness experimental and theoretical 
semivariograms: a) vertical direction, b) horizontal 
direction. Theoretical semivariograms are Gaussian. 
 
2.3.4 Shaliness vs. Resistivity Relationship: Figure 
6a displays a crossplot of the resistivity and 
shaliness. Two main clusters are shown, 
corresponding to the different lithologies. It 
suggests that resistivity/shaliness pairs are useful 
for lithology identification. The overlap between 
the sand and silt clusters indicates that a unique 
identification of lithology based on resistivity and 
shaliness is not possible for all pairs.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6: a) True petrophysical relationship between 
shaliness and resistivity plotted from available data at the 

wells crossing the HSU2. b) Generic scheme for 
constructing conditional (prior) resistivity pdfs to lithology 
and shaliness 
The main reason for the overlap between the two 
clusters is data reduction: the original lithology 
classification consisted of 16 members, which we 
have reduced to only two.  
Despite the ambiguous interpretation of several 
pair combinations, it appears that this crossplot is 
a good analytical tool. This is one of the 
fundamental results of our analysis so far since it 
suggests a systematic approach for tying the 
survey with well logging information. Figure 6a 
was obtained using all well log data within the 
HSU2. The use of shaliness instead of gamma-
ray activity considerably improved the clustering 
analysis. This analysis has been applied to other 
HSUs as well, and we observed a behavior 
similar to Figure 6a. 
 
3 Bayesian Data Assimilation 
 
Ideally, the geophysically measured attributes 
correlate well with the hydrogeological ones and 
the conversion of the geophysical attributes to 
hydrogeological ones is straightforward. In 
realistic situations, however, the conversion is 
convoluted and non-unique. Hence, a conceptual, 
data-driven approach for lithology mapping 
based on the well log data is developed. The 
proposed approach is general in its basic 
principles, but not universal since the employed 
petrophys ical models are site specific. The 
general approach is stochastic given the large 
uncertainty associated with crosswell 
interpolation, with the petrophysical models and 
with the interpretation of the geophysical 
surveys.  
Our approach consists of sequentially generating 
a series of collocated attributes. At the basis of 
the hierarchy, images of the lithology are 
generated, conditional to well logs. Each 
lithology image serves then as the basis for 
generating a series of shaliness images 
conditional to well data. The shaliness images 
are then used to correlate the survey resistivity 
with the hydrogeological attributes obtained 
experimentally. The series of generated images 
all have in common the well data and the same 
underlying spatial structure and hence they are 
all physically plausible. The variations between 
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the images constitute a measure of the spatial 
variability and estimation uncertainty. We focus 
here on estimating resistivity, but it can be 
converted to conductivity using well-known or 
site-specific models [Mavko et al., 1998; Daily et 
al. 1992]. 
 
3.1 Outline of the approach 
After the exploratory data analysis is performed as 
previously described, we proceed in four steps as 
described below.  
 
a- Generation of the lithology images using 
sequential indicator simulation (SIS). The 
lithology is defined through an indicator variable I 
according to: i=1 if x is located in a silt body, 0 
otherwise. Note that boldface letters denote 
vectors, i.e., x is the location coordinates vector. 
Lower-case i is a realization of the spatial random 
function (SRF) I. I is characterized through its 
expected value cond itional to the borehole data, pc 
= Ec{I} = E{I|measurements}, with a superscript 
“c” denoting conditional. Since I is binary, pc is 
statistically exhaustive. Its spatial variability is 
defined through the semivariogram and is shown 
in Figures 4a-b. These statistics are the 
cornerstone of the SIS algorithm [Deutsch and 
Journel, 1998] adopted here.  
 
b- Generation of shaliness images. This step is 
similar in principle to the previous one. The 
differences are in the fact that (i) the shaliness S is 
not a binary variable and (ii) the pattern of spatial 
variability of the shaliness may be different 
between the sand and silt lithologies, i.e. γS|i, the 
semivariogram of the shaliness S, depends on the 
lithology i=0 or 1. SGS algorithm [Deutsch and 
Journel, 1998] is adopted here to generate 
shaliness images. Shaliness S is defined by its 
mean mS|i, its semivariogram γS|i and its 
covariance, CovS|i, for a given facies i. 
 
c- Computing the resistivity prior pdf. Once x is 
identified as being either sand or silt and is 
assigned a shaliness value, a prior pdf for the 
resistivity fR(x)(r|I=i, S=s) can be defined through 
Figure 6a. R and S denote the SRF of the 
resistivity and the shaliness, respectively, and r 
and s denote their realizations. Figure 6b 
illustrates the joint pdf of R and S given I=0 (i.e., 

sand lithology) and the marginals fR(r|I=0) and 
fS(s|I=0). Conditioning further on S=s0 leads to 
fR|S(r|S=s0, I=0), which is our Bayesian prior. 
Scarcity of data led us to condition on ranges of 
S values rather than on single values. These pdfs 
are the Bayesian prior pdfs of the resistivity, and 
hence our stochastic estimation for the resistivity 
R at x in case no additional data become 
available through surveying. 
 
d- Updating fR(x)(r|I=i, S=s) based on crosswell 
electromagnetic resistivity survey ρ(x). Defining 
fR(x)(r|I=i, S=s) = f′R(x)(r) for brevity, and given a  
collocated survey resistivity ρ(x), the posterior 
pdf f″R(x)(r|ρ) can be defined through Bayes' rule 

[Ang and Tang, 1975]: 
where L(ρ|r) is the likelihood function, and CR is 
a normalized factor. In general, ρ is defined over 
a support volume larger than the support volume 
of r. In the case of a high resolution geophysical 
survey ρ(x)→ r(x) and Bayesian updating is 
unnecessary. This, however, is not generally the 
case and the alternative is to update f'R(x)(r) given 
ρ. Typically we are interested in R representative 
of a block of scale ~1m while ρ is defined by 
blocks of scale ~3m or greater. The inference of 
the likelihood function, L(ρ|r), is critical for the 
successes of the updating process. Once f″R(r|ρ) 
is defined, a realization of R at x can be drawn. 
The whole process is repeated for all x until a 
complete image of the resistivity field is 
completed. Similarly, the lithology images can 
be improved through the resistivity survey 
despite the non-linear and non-unique 
relationship displayed in the cross-plot. Our 
approach calls for Bayesian updating of pc as 
well, through the relationship: pc' = CI L(ρ|I) pc, 
where L(ρ|I) is the likelihood function, of a 
similar nature to L(ρ|r), only relating ρ to I rather 
than R. CI is a normalized factor similar to CR. 
 
3.2 The Synthetic “True” Database 
The concept outlined in Section 3.1 is 
demonstrated here using a synthetic example, 

1
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generated to simulate closely the conditions of 
HSU2. Figure 7a depicts a realization of HSU2 
lithology cond itional to the lithology observed at 
the wells. The field is 230m and 17m, in the 
horizontal and the vertical direction, respectively. 
Realizations of the shaliness (not shown here) and 
resistivity fields, generated based on 3.1.b-c, 
conditional to borehole data, are depicted in 
Figure 7b using spatial statistics described in 
Section 2. 
 
 
 
 
 
 
 
 
 
 
Figure 7: “True” geological setting. a) Sequential Indicator 
Simulation of the lithology conditional to borehole data. 
Black and white colors represent sand and silt, respectively. 
b) True resistivity random field built by projecting the 
“true” shaliness field using the petrophysical relationship 
depicted on Figure 6a. 
 
4 Electromagnetic Surveying 
 
Field EM surveying is a complex mapping of the 
detailed, high resolution R(x) distribution into a 
low resolution ρ(x) field. An electromagnetic 
survey was conducted at LLNL, but final results 
are not yet available. To explore the Bayesian 
updating approach, synthetic surveys of the 
resistivity are simulated. Under reasonable 
approximation of low variability of the resistivity 
between the sand and the silt bodies (see Figure 
6a), the EM wave propagation problem can be 
reduced to an electric current diffusion problem. 
Identical problems have been considered in fluid 
flow in porous media and electric currents 
[Dagan, 1989; Abramovich and Indelman, 1995]. 
Borrowing from their results, and considering 2D 
survey, the electrical conductivity κb (inverse of 
electrical resistivity) of a block, which covers nx 
by nz small-scale blocks, where nx is the number 
of blocks in x direction and nz in the z direction, is 
given by the geometric mean. The geometric 
mean is applicable for blocks, which are large 
relative to the characteristic length scale of 

resistivity heterogeneity, which is the case of the 
present study. We shall consider nx=nz=3,6,9. 
Figures 8a-c show results of synthetically 
surveying the resistivity field shown in Figure 7b 
using different resolutions. As the resolution 
decreases, small-scale details become obscure 
and fuzzy, and the range of resistivity values 
detected narrows. 
 
 
 
 
 
 
 
 
 
 
Figure 8a-c: Examples of the resistivity surveys obtained 
by geometric averaging of the “true” resistivity field 
(Figure 7b) over a) 3, b) 6, and c) 9 small scale blocks in 
the horizontal and vertical directions. 
 
5 Synthetic Case Study 
 
In our case study we investigate the cross-section 
shown in Figure 3b, assuming that Figures 7a-b, 
which were generated conditional to the borehole 
data, are the “true” images of that cross-section. 
A geophysical survey of the same cross-section 
is simulated. Our goal is to test the capability of 
the method described in Section 3 to reconstruct 
the base case's images while benefiting from the 
resistivity survey. Typical images obtained 
through the use of prior pdfs only are depicted in 
Figures 9a-b. Figures 9a and 9b will be updated 
following the methods outlined in 3.1c and 3.1d. 
Updated images will be compared to the assumed 
“true” images depicted in Figures 7a and 7b. 
 
 
 
 
 
 
 
 
 
 
 



 7 

Figure 9: a) Single realization of the lithology field. 
Sequential Indicator Simulation (SIS) of the lithology 
conditional to borehole core data. Black and white colors 
represent sand and silt, respectively. b) Single realization of 
the resistivity field built by projecting the shaliness random 
field (not shown here) using the petrophysical relationship 
(Figure 6a). 

5.1 Indicator Likelihood Functions and 
Updating the Lithology Images 
To infer L(ρ|I) we use the concept of “training 
set”. The idea is to identify a portion of the 
survey area which will be drilled and cored post 
survey to yield a set of collocated measurements 
(ρ,i). The dimension of the training set area 
should be determined such that the survey 
represents the entire range of conditions expected 
over the entire surveyed area. The sampled area 
needs to be ergodic in terms of bivariate (ρ,i) 
statistics. That usually implies a dimension of 
several integral scales vertically, along cored 
wells. In the present application, the well-
sampled area near well 1250 (right-hand side of 
Figure 3) was set to be the “training set”, and the 
much less sampled area near well 1205 (left-hand 
side of Figure 3) was set as the “testing set”. 
L(ρ|I) is determined for a given I=i and ρ=ρ0 by 
scanning the set of collocated pairs (i,ρ0) and 
computing the cond itional probability 
Prob[ρ=ρ0|I=i]. Bayes’ rule is then used to 
update the lithology image (Figure 9a) using 
different resistivity survey resolutions. Images of 
the “testing set” obtained for (nx x nz)=(3x3), 
(6x6) and (9x9) resistivity surveys (Figures 10a-
c) are practically of the same quality as without 
updating and differ only by a fraction less than 
1% from the prior lithology (Figure 9a), even in 
case of high resolution resistivity survey (3x3).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10a-c: Posterior lithology image of the “testing set”, 
left-hand side of Figure 9a, using Bayes’ rule, and a) 3x3, 
b) 6x6, and c) 9x9 resistivity survey (Figure 8a-c). 
 
This outcome is a manifestation of the effect of 
the homogenization, which obscures the 
resistivity- lithology relationship. A large number 
of resistivity combinations can lead to the same 
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ρ, and hence to non-unique relationship between 
ρ and the lithology. 
 
5.2 Resistivity Likelihood Functions and 
Resistivity Images Updating 
L(ρ|r) is approximated here by L(ρ|r-δr≤ρ<r+δr) 
with a relatively small δr, due to the data scarcity. 
The effect of updating the resistivity based on 
surveys with different resolutions is demonstrated 
in Figure 11. It shows the prior and posterior 
resistivity pdfs at arbitrary points within the silt 
and sand lithologies for various resolutions of the 
resistivity survey. The maximum beneficial effect 
is obtained, not surprisingly, through the high-
resolution survey, but the positive impact of 
conditioning on ρ is discernible even at the low-
resolution surveys. The trend of reduction in 
impact with poorer resolution is evident and is an 
outcome of the diffuse and non- informative nature 
of the likelihood function as the discrepancy 
between the survey scale and the desired 
resolution scale increases.  
 
 
 
 
 
 
 
 
 
 
Figure 11: Posterior resistivity images of the “testing set”, 
left side of Figure 9b, using Bayes’ rule, and the resistivity 
surveys: a) 3x3, b) 6x6, and c) 9x9 resistivity survey (Figure 
8a-c) and the posterior lithology (Figure 10a -c). 
 
Note that conditioning R on ρ does not imply that 
the randomly generated values will average 
exactly to yield ρ unless special measures are 
taken. To honor precisely the surveyed value ρ, a 
constraint on the generated value is introduced so 
that the generated r values over any volume 
corresponding to ρ will average exactly to yield ρ. 
This procedure is described elsewhere (Ezzedine 
et al., [1999]). Figures 12a-c depict the updated 
resistivity fields for (nx x nz)=(3x3), (6x6) and 
(9x9) resistivity survey. These Figures should be 
compared to the “true” image (Figure 7b, left 

part), and with the image generated based on the 
prior pdfs, Figure 9b. It is quite obvious that the 
resistivity surveys have a significant positive 
impact, particularly at the high resolution. 
 
5.3 Effectiveness of the Bayesian Updating 
To evaluate the effectiveness of the updating 
procedure, we analyze the following statistic: 
 
where k is a running index over all the points 
outside the wells, r is the actual resistivity 
(Figure 9b), m″ is the mean of the posterior pdf 
f″R(x)(x), and m' the mean of the prior pdf 
f'R(x)}(x). The ratio ℜ compares the performance 
of the posterior and the prior pdfs. ℜ smaller 
than 1 indicates a successful updating procedure. 
ℜ=1 is a diffuse likelihood and hence a non-
informative survey. Figure 12 depicts the 
variation of ℜ, as a function of the resolution of 
the survey. For completeness, statistics were also 
computed for resistivity surveys of (2x2) and 
(12x12) block resolution. We have found that ℜ  
decreases with decrease in resolution, in line 
with Figures 8a-c. 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Percentage of number of successes, based on ℜ, 
of the Bayesian updating approach for different survey 
resolutions and different errors in the surveys. 
 
6 Summary 
 
We surveyed some of the problems associated 
with combining resistivity tomography and 
resistivity well logging. We analyzed the data 
collected at the LLNL site, and synthetically 
surveyed a cross-section, which was constructed 
to mimic closely the geology of the site. 
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Our approach for data assimilation is stochastic 
Bayesian. We find the justification for it in the 
large spatial variability and data scarcity. The 
Bayesian approach allows us to condition 
estimates on what is clearly a set of complex and 
non- linear petrophysical models relating between 
different geological attributes. Our approach 
comprises several steps, each of which intended to 
explore, model and utilize the aspects of the data 
that are needed for relating between the 
tomographic data and the well logs.  
Our study employed several relationships between 
induction resistivity, lithology, shaliness and 
tomographic resistivity. These relationships 
reflect, to a large degree, properties, which are 
well understood and are quite general in terms of 
trends. We suspect though that these relationships 
cannot be transported to other sites. In this sense 
our method does not replace nor alleviate the 
tedious task of data exploration. At the LLNL site, 
the key element is the shaliness, due to its well-
defined spatial structure and its sensitivity to 
resistivity. The idea then is to use this variable for 
projecting well data and generating a prior that are 
both relevant for the application and can benefit 
from the geophysical survey. 
At this stage the Bayesian approach becomes the 
key for data assimilation, its robustness stems 
from its ability to express vague relationship as 
probabilistic rules and to bridge over scale 
disparity issues. This brings us to refer to the 
approach presented here as a set of tools rather 
than as a clear road map. 
We have found that the benefits in estimating 
high-resolution subsurface resistivity given a low-
resolution resistivity survey are more significant 
than those gained in estimating lithology. The 
LLNL data showed good correlation between 
resistivity and lithology at the small scale, but at 
lower resolution the correlations deteriorate. This 
observation is supported by the fact that the 
resistivity surveys were non- informative for 
updating the lithology images. Resistivity-
shaliness- lithology relations may show perfect 
correlation at a fine scale but can appear to have 
large scatter when using a larger observation 
scale. 
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