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Abstract The use of the block-scale macrodispersivity concept to model the effects of the 
unresolved sub-grid hydraulic property variations, which are progressively wiped-out with the 
coarsening of the computational grid, is discussed by means of an example. In stochastic 
modeling, a computational grid with block sizes of only a fraction of the log-conductivity integral 
scale should be used to reproduce accurately the hydraulic property variations. To reduce the 
ensuing computational effort of Monte Carlo simulations, we propose simulating solute spreading 
using larger grid blocks, while reproducing the effect of the sub-grid spatial variability of the 
hydraulic conductivity, which is not captured directly on the grid, by Brownian motion with the 
time-dependent effective block-scale dispersion tensor. The resulting plume moments compare 
very well with those obtained using fine grid blocks, showing that the block-scale dispersivity 
concept provides a valid alternative to the traditional upscaling techniques for reducing the 
computational burden of numerical simulations without compromising accuracy.  
 
 
Introduction 
 

The spreading of solutes in natural formations is controlled by hydraulic property 
variations acting on a multiplicity of continuous and discrete scales. Stochastic modeling 
is often used to account for both the variations of the hydraulic conductivity, K, and 
uncertainty. The latter accounts for incomplete information on the actual hydraulic 
property variations. To capture accurately the spatial variability of K , a very fine grid is 
required, with typical dimensions being only a fraction of the log-conductivity integral 
scale. The ensuing computational burden is one of the main drawbacks limiting the use of 
stochastic modeling in applications, and its relevance increases when stochastic modeling 
calls for Monte Carlo simulations. The tendency is to reduce the computational cost by 
using larger grid block scales, and reducing the resolution. Using large grid blocks is 
permitted only if measures are introduced to account for the loss of resolution caused by 
the homogenization.  

The idea of using an upscaled macrodispersion coefficient was explored by Dagan 
(1994) and pursued further by Rubin et al. (1999), who derived and discussed the block 
dispersion coefficient for ergodic plumes. In Bellin et al. (2001, submitted), a method is 
proposed which reproduces the large-scale variability directly on the grid, and models the 
unresolved small-scale variations through suitable block-scale effective macrodispersion 
coefficients, which depend on both plume and block scales. In this paper, we summarize 
those calculations and show an example of the results. 



  

 
The block-scale dispersion coefficient  

 
We start by considering that the following length scales are important in numerical 

modeling of transport in heterogeneous formations: IY, the integral scale of the hydraulic 
log-conductivity, Y=lnK, which represents the hydraulic property variations of the 
geological formation; the characteristic size of the source, l; the characteristic size of the 
grid-blocks, ∆ ; and the length representing the characteristic scale of the variability 
reproduced directly on the grid, λ , which corresponds to the highest observable 
frequency )2/(1 λ=f . In applications, the latter can be roughly defined as the dimension 
of the zone of uniform hydraulic conductivity. The spreading of the plume is controlled 
by the interplay between these scales of variability. Following Rubin et al. (1999) we 
assume that the local fluctuation of Y from its expected value, Ym , can be split into two 
components  

 
 YYY ~' += ,  (1) 

 
where Y  is the zero-mean fluctuation representing the variations captured by 
simulations, and Y~  represents the subgrid variability, such that λ  is proportional to YI , 

the integral scale of Y .  
Monte Carlo simulations use repeated solutions of flow and transport in which the 

hydraulic conductivity is homogenized over volumes as large as the grid blocks, 
neglecting the hydraulic property variations at scales smaller than λ . To avoid this 
problem, blocks with size equal to only a fraction of YI are used in numerical simulations, 
leading to a large computational cost, compared with traditional models.  

In a recent paper Rubin et al. (1999) introduced the concept of block-scale 
macrodispersion to represent the effects on the plume of the wiped-out variability. 
According to Rubin et al. (1999), the macrodispersion tensor ijD is composed of two 

terms: the large-scale macrodispersion tensor ijD  representing hydraulic property 

variations at scales larger than λ , and the block-size macrodispersion tensor ijD
~

 
modeling the wiped-out small-scale variability 
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For a constant mean velocity vector U  parallel to the 1x direction, ijD  and ijD

~
 

assume the following expressions 
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and 
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where YĈ  is the Fourier transform of the log-conductivity covariance function, δ  is the 
Kronecker delta, ik , i=1,..,m, with m  representing the space dimensionality, are the 
components of the wavelengths k , and m1 dk ...dkd =k . In (3) and (4) F is the following 
filter 
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In Monte Carlo simulations ijD is modeled through the variations of the hydraulic 

conductivity reproduced directly on the grid, and ijD
~

represents the effects on the plume 
spreading of the wiped-out variability. In this paper, we propose to model the wiped-out 
variability through the diffusive term of the advection-dispersion equation with the 
dispersion coefficient given by (4). In principle, this allows using larger blocks in the 
numerical simulations, reducing the computational effort without compromising 
accuracy. 

In the next section, we show with an example how this can be accomplished. There 
are of course limits to the maximum block’s size that can be employed in numerical 
simulations, which are discussed in detail in the work by Bellin et al. (2001, submitted). 
 
 
An example of application 
 

We consider here, as an example, a two-dimensional isotropic formation with the 
following model of the hydraulic property variations 
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where ir , i=1,2, is the i-th component of the two-point separation distance. The hydraulic 
conductivity is first generated over a regular grid with spacing Y21 I25.0== ∆∆ , by using 
HYDRO_GEN, the generator of random functions developed by Bellin and Rubin 
(1996), and then it is filtered to remove fluctuations at frequencies larger than )2/(1 λ=f  
obtaining Y . Flow is solved by the Galerkin’s method with triangular elements and linear 
shape functions. Additional information concerning the Galerkin’s scheme and its 
implementation in heterogeneous formation can be found in the paper by Bellin et al. 
(1992). Furthermore, in numerical simulations the size of the computational grid blocks, 
∆ , is assumed as large as λ .  



  

We consider here the case of an instantaneous release of solute with constant 
concentration, 0C , within the surface 0A . Transport is solved in a Lagrangian framework 
in which the total mass of solute is divided into a large number, NP, of non- interacting 
particles, which are displaced according to the following particle tracking algorithm 
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where, ijX , is the i-th component of the trajectory of particle number j, iv  is the Eulerian 
velocity computed numerically from the solution of the flow equation, t∆  is the time step 
used to solve the transport problem, and ij ,ε is a normally distributed random number 
with mean zero and unit variance. Here and in the following, the exponent (k) is used to 
indicate quantities computed in the k-th Monte Carlo realization. The second term on the 
right-hand side of (7) simulates the convective effects resulting from the variability 
reproduced on the grid, and the third term reproduces the macro-dispersive effects of the 
wiped-out variability. We neglect pore-scale dispersion, which only effects the plume 
moments appreciably for large traveling distances (Fiori, 1996). 

We describe the plume behavior through the longitudinal effective second order 
moment, >< 11S , which in the Lagrangian framework used in this work is computed as 
follows: 
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where )(

1
kR is the longitudinal component of the trajectory of the plume centroid in the k-

th Monte Carlo realization, and MC is the number of Monte Carlo realizations determined 
such that convergence of ensemble statistics is ensured. It can be shown that the moments 
(8) converge to the exact solutions as the number of particles grows large. The numerical 
moments computed by (8) are compared with analytical first-order solutions. 

Figure 1 shows >< 11S  obtained from numerical simulations conducted with 

several block sizes and with the wiped-out variability simulated through ijD
~

 (4). The 

source area is rectangular with sides YIl =1  and YIl 10=  along the longitudinal and 
transverse directions, respectively. The first order solution is obtained for vanishing 
longitudinal source size and YIl 10= .  

The two cases YI2==∆ λ  and YI6==∆ λ  show a relative difference varying 
between 5.1% and 7.4%, for 5/ >YItU , such that it can be neglected in applications. 
Additional numerical simulations showed that this difference reduces further, being 
comprised between 2.2% and 2.9%, when the case YI6=λ  is simulated with YI4=∆ , 
such that 2.1/ =∆ YI  as for YI2==∆ λ .  



  

We compare now large- and fine-grid simulations, with the latter obtained by using 
blocks of size 25.0/ =∆ Yfg I , which is dictated by the need to reproduce the hydraulic 
conductivity field over the grid with a negligible wiped-out variability (Bellin et al, 
1992). Fine grid simulations are then conducted by setting 0

~
=iiD  in (7). The relative 

difference, which for YI2==∆ λ  and 5/ >YItU  varies between 8.6% and 12.7%, with 
the smaller value observed at the larger times, is between 15.1% and 19.5% for 

YI6==∆ λ . 
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Figure 1: Comparison between the longitudinal second-order plume moments obtained with 

several block sizes. The first-order solution, obtained in absence of wiped-out 
variability, and the fine-grid numerical solution are also shown. In all cases, the 

transverse source size is 10/ =YIl  and 2.02 =Yσ . Results are obtained with 2000 
Monte Carlo realizations. 

 
These differences originate from the neglected terms of order higher than 2

Yσ  in (4), 
which are instead included in the fine grid simulations, leading to numerical simulations 
which disregard the non- linear effects of the wiped-out variability on the solute 
spreading, and of the progressive deterioration of accuracy of the numerical simulations  
as the block’s size grows large. The latter is the consequence of the fact that the same 
level of accuracy in the reproduction of Y  is obtained only if ∆  is set in such a way as to 
maintain constant the ratio YI/∆ , and YI , the integral scale of Y , increases less than 
linearly with λ  (Rubin et al., 1999), such that doubling λ  results in a smaller relative 
increment of YI . Thus, if ∆  is set equal to λ , simulations conducted with a large λ  
suffer form a less accurate reproduction of the large-scale variations,Y . To separate the 



  

two effects, we repeated the simulations imposing the condition 25.0/ =∆ YI , which 
leads to grid’s sizes of 6.0,4.0/ =∆ YI  and 0.8 for the three values of λ considered in this 
paper. In doing that, the ratio fgR ∆∆=∆ /  is 1.6 for 2/ =YIλ , and it reaches the values of 

2.4 and 3.2 for 4/ =YIλ  and 6/ =YIλ , respectively. The resulting moments are shown 
in Figure 2. The relative differences between large- and fine-grid simulations reduce with 
respect to the cases shown in Figure 1, varying between 2.2% and 4.6% for YI2=λ , and 
between 6.9% and 9.7% for YI6=λ . In both cases, the smaller relative difference is 
observed at the larger times. The case YI4=λ lies in between the other two cases. 
Furthermore, Figure 2 shows that the numerical >< 11S  is larger than the corresponding 
fine-grid solution and that as λ  increases it approaches the first-order solution. This 
result shows that the effects on the solute spreading of the wiped-out variability can be 
reproduced through (4) with the above limitation for the grid’s size, although the relative 
importance of the neglected higher-order terms increases with λ , as more variability is 
reproduced through ijD

~
.  
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Figure 2: Comparison between the longitudinal second-order plume moments obtained while 

maintaining constant the ratio YI/∆ . The first-order solution, obtained in absence of 
wiped-out variability, and the fine-grid numerical solution are also shown. In all 

cases, the transverse source size is 10/ =YIl  and 2.02 =Yσ . Results are obtained 
with 2000 Monte Carlo realizations. 

 
In the remaining part of this paper, we discuss the results of an exercise conducted 

to verify if the concept of block-scale dispersivity can be used in simulations conditional 
to log-conductivity measurements. A more detailed discussion is presented in Bellin et al. 



  

(2001, submitted). The actual longitudinal second-order moment, 11S , obtained 
numerically from a realization of K , which is assumed as the true picture of the aquifer, 
is compared with >< 11S  obtained from Monte Carlo simulations conditional to the 
measurements of K extracted from the same reference field. Measurements are taken over 
a regular grid with spacing YI2=δ in both longitudinal and transverse directions, 

YI2=λ , and the block’s size is fixed at YI4.0=∆ . Numerical results discussed in Bellin 
et al. (2001, submitted) show that >< 11S , conditional to the measurements, reproduces 
the main features of the actual moment, 11S , much better than the corresponding 
unconditional moment. However, as λ  increases, the difference between conditional and 
unconditional moments vanishes, since ijD

~
, (4), is obtained for the unconditional case. 

Furthermore, the one-standard deviation interval of confidence increases with the travel 
distance, leading to the conclusion that uncertainty increases with the travel distance. The 
unconditional moments show a more regular behavior, which for 4/ >YItU , differs from 
that of the actual moment. The impact of the spacing between measurements is further 
discussed in Bellin et al. (2001, submitted). 

The main conclusion that can be drawn from this work is that the block-scale 
macrodispersion coefficients can be used to model the wiped-out variations occurring 
when blocks larger than a fraction of YI  are used in numerical simulations. This leads to 
the reduction of the computational cost of the numerical simulations. The need to obtain 
an accurate reproduction of Y  poses a limitation to the grid size, which cannot exceed 

YI25.0 , if the simulations are conducted with the objective of making the results 
independent from λ . However, numerical simulations showed that from a practical point 
of view, block sizes as large as YI2.1 can be used if a moderate difference of about 2% 
between cases with different values of λ can be accepted. However, it should be noted 
that higher-order effects are captured only for the variations reproduced on the grid, such 
that numerical and first-order solutions for >< 11S  tend to converge to the same result 
when λ  grows large. 
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