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Abstract Cluster Locations Il. Experimental Design Cluster 1 2 S = > 6 1 8
Measurements of individual tree transpiration, obtained using the sap flow technique, are easier to collect . DBH (cm) 30 45 31 22 15 10 30 18

and less expensive than other traditional measurements of ecosystem evapotranspiration, such as eddy-covariance Locati ng the Sap Flow Sensors Trees (num_) 97 56 94 83 71 80 42 52

and lysimetery. Upscaling these point measurements to a stand or a landscape level, however, is a challenge, - U ling d d lectively 1 ti . tatistical techni

especially in water-controlled ecosystems. At these scales, sap flow cannot be treated solely as a function of pscaling depends on selectively localing sensors using statistical techniques Slope I. H H I H H I L

diameter; available soil moisture strongly influences transpiration, and this can vary considerably across a u partitioning Around Medoids (PAM) cluster analysis method (Kaufmann and Elevation L HL HHUHH L

landscape.

In this study, geostatistical and partitional clustering methods were used to locate a network of sap flow and
soil moisture sensors across a California Oak Savanna. Eight “representative trees” were monitored; each was
systematically selected to represent a subgroup of the population within a 200 x 200 m plot. All trees in a subgroup

Rousseeuw, 2005) used to identify eight main groups of trees Sl

= Tree classification based on diameter and soil properties L represents a medoid tree with a value lower than stand

had similar diameters and soil moisture status and were presumed to have correspondingly similar sap flow. The = Sensors placed on medoid tree, the most “representative tree” in each group average, H represents higher than average.

sensors collected half-hour data over the course of the 2007 growing season, during which unusually low rainfall (€ + )
. . . m

occurred. From Heat Pulse Velocity to Stand Transpiration 2. Womippliiw T Metel

The sap flow data for each tree was transformed into specific water flux, and a total stand level water flux
was computed at hourly and daily time-steps. Large diameter trees in wet areas typically contributed to almost
40% of the total stand flux, while they accounted for less than 10% of the total population. To test the method, these
fluxes were then compared to the measurements of stand level tree transpiration collected using the eddy-
covariance towers on site. In the future, this technique could be used to measure transpiration of targeted trees

psC.
1. Heat pulse velocity (V;) measured using the Heat Ratio Method (Burgess, 2001) :

2. V,, converted to sap flow velocity (V,) based on wood properties: density (p,), wood and
sap specific heat capacity (C,, and C,), moisture content (m.), and wounding factor (f3)
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over a broader area or in terrain or situations where eddy-covariance is not feasible. N e3¢ ¥ L . . 4
i i s 3 0 20 40m 3. Find tree flux (Q,,) from V,, sap wood cross-sectional area (A) and ray cell factor (y) + Qstana = ) Milsapi
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4. Sum product of representative tree (Q,y,;) and number of trees in cluster (n;)

Cluster membership for each tree in study area and the 5 Djyide by total area included in study (A and compare to ET from towers
locations of representative trees with sap flow monitoring. ’ Qutana bY Y (Astana) p
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l. Introduction
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individual trees to estimate stand or X . typically had similar velocities during the wet season but different velocities during the dry season. This difference is reflected in their root zone averaged soil moisture conditions
) . 2 ; : = Lower than normal rainfall resulted in (KVWC>, right). The Cluster 6 tree has a diameter 1/3 that of the two and lower soil moisture, resulting in consistently lower velocities.
landscape level fluxes, i.e. upscaling earlier senescence
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System Components necessarily induce lower sap velocities Day of Year, 2002 Days after Jan. 1, 2007 Days after Jan. 1, 2007
® Solar powered control = Stem water content, as indicated by tree Converting the heat pulse velocity to transpiration required calculation of the stem wood thermal properties, as discussed above. In previous studies, the value of m_ had been taken as
panel and data logger diameter, cannot be assumed constant and a constant, but field data from previous years (left) indicates that during the dry season, tree diameters shrink significantly, indicating a decrease in stem water content. Although not
u Sap flow probes at0.3 heavily influences sap Velocity calculations measured in 2007, when estimates of m. and stem diameter changes are incorporated into the calculations, the tree sap flux (center) and overall stand transpiration (right) show

atterns more consistent with that measured using the eddy-covariance technique.
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