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GPR background

Groundwave Study, Mondavi Site
Reflection Study, Dehlinger Site

Use of Data for Ecosystem Modeling
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Importance of Understanding Soil Properties

in Vinevyards:

1) Improved vineyard layout;
2) Improved irrigation management;
3) Improved understanding of ecosystem responses

and terroir;

4) May assist with understanding pest distribution

(phylloxera).

Natural Variability of Soil Properties are

Difficult to Capture using Point Measurements:

Near Surface Water Content
Regulates partitioning of precipitation into runoff,
evapotranspiration, and groundwater storage
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** Accurate Spatial and Temporal Variations in Water
Content (due to soil heterogeneity, topography, land cover,
evapotranspiration and precipitation) may be difficult to
map using TDR or gravimetric techniques**



GPR METHOD

The velocity of the

GPR waves
can be used to
estimate

soil water content

Short pulses of
High frequency
EM energy

Variations in
electrical
properties modify
GPR attributes

Relate dielectric
constant to
volumetric water
content
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By using ground and reflected
waves (and different frequencies?):
Obtain 3-D moisture content

data cube:

GPR Surface Line Traverses

0 Distarce i) 30
Moisture Content and/or Soil Texture
Variabilities mapped using
Surface Radar Data



Test of Ground Wave Concept under Natural ﬂ
Heterogeneous Conditions:
Robert Mondavi Vineyard, Oakville CA
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900 MHz Groundwave Example

under varied Moisture Conditions
Before and After Forced Infiltration
Row 145, V. 58-62
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Increase Moisture: Higher dielectric constant or longer GPR travel time

* Map GPR travel time (velocity,dielectric constant)
* Convert to volumetric water content (VWC)
using a petrophysical relationship



Special Studies: GPR-obtained Volumetric
Water Content (VWC) Estimates vs. TDR
measurements and Soil Texture:

*Good
correlation
between

GPR and
Conventional
Point
Measurements

* Soil Texture
influences soil
moisture
seasonally in
a consistent
manner

Comparison of TDR and common-offset
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Special Study Results:

* GPR groundwave compared favorably with
gravimetric and TDR ‘point’ samples;

* Topp’s overestimated VWC compared to Site-
specific petrophysical model;

* Accuracy: RMS error for the 900 MHz data was
0.015 m3/m3, with the highest error in dryer soils;

* Depth of Penetration 900 Mhz: ~10-15 cm

* Soil moisture closely linked to soil texture.
Grote et al., in submission to WRR

GRID ANALYSIS using Special Study Results:
VWC estimated at one point in time from 900 Mhz
data over entire site

" e
02 5o - == - =-WET—
g e == e
. —— Bl — e =
uoll = EEsm=_——mi=_-_ —e=
VI | = <« R ——
w| | 2 = —=—=_—fil— T =B
Zal g = E= —— —
WV o5 o = = Sm—— =
C wl el ——— e B ——
! BocoEl=m===C_—g =
- ___L_*
20 = = ==
=
— - =
||

IIH Il

145 115 95 75 60 45
ROW NUMBER



Time-Lapse Moisture Monitoring
over Mondavi Site using DATA GRIDS

Volumetric Water
Content estimated
over Space and Time
at the Robert Mondavi
KeCs Block and
measured soil texture
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* Persistent Spatial Patterns
of Soil Moisture over time

* Seasonal and Irrigation
effects

*Textural control on soil
Water content distribution
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VWC Estimated using different
Frequency GPR antennas
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* 900 and 450 MHz yield similar
spatial patterns

* 450s sensing wetter (deeper)
soil layer than 900s?




Investigations of VWC Spatial Correlations

Effects of Season, Irrigation and Measurement Tool

* SEASON
- Highest VWC variability during drip-irrigated times
- Lowest VWC variability during dry season
* MEASUREMENT TOOL
- Variability of 900 MHz>TDR>450MHz
- Range estimated from 900 MHz < TDR < 450 MHz
* CROP COVER
- More variability in rows with crop cover during spring
- Effect of crop cover on VWC variability is not
significant in the winter
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Reflection Studies under Ideal Conditions

1) Constructed ‘Test Pit” with buried metal reflectors.
2) Engineered pavement layers during infiltration

experiment.
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Using 900 and 1200 MHz data Grote et al., 2001

under constructed and engineered conditions,
GPR reflection travel time data 1s accurate to within
~1% for estimating volumetric water content



Reflection Study under Natural Conditions
Dehlinger Site,
Russian River Valley, CA (100&200 MHz)

DATA: py
* GPR grids and detailed studies

* TDR

* Neutron Probe
* Soil Samples
* Vigor



Examples of “Base of Channel” picks on 100 MHz GPR

line during October and November, 2002.

OCTOBER PICKS
NOVEMBER PICKS

ROW 17
CHAN

BAYESIAN PROCEDURE for estimating the DEPTH

TO BASE OF CHANNEL

— Use co-located wellbore and GPR measurements to

develop likelihood function (L).
— Estimate prior depth pdfs using wellbore data and

kriging;
— Estimate Depth to Base Channel using GPR travel

time data, prior depth estimates and Likelihood

within Bayesian Approach

lapse travel time maps to estimate water content

— Use estimated depth structure contour map with time-
above base of channel and over time.



Preliminary Estimation of Volumetric Water
Content above Base of Channel Reflector using 100

MHz GPR Reflection Data DATA GRIDS

Distance along Vine Direction{m)
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Oct. 02 0.016
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Reflector Summary:

* Errors reasonable;

* Need good reflector and good depth constraints;

* More difficult than groundwave approach but
capable of providing deeper VWC estimates.




Objective: Determine value of GPR-obtained
parameter estimates to ecosystem prediction using
water balance models.

Observed: Variations in Vigor and Yield

2002 Reporied Yield
| Average Crop weight/
{Average Brush weight
over 12 vines)

Highest Crop Weight
in Channel

Distance along vines (m)

08 T T =1 [1
oo A0 100 o200

Distance alang Vine
C T
0.1= 0.22 0.260

ESTIMATED YWC NOV 02

INVESTIGATE:

* What depth zone and hydrogeologic parameters
most influence NDVI?

* How significant are the spatial variabilities
of hydrogeological parameters on the ecosystem
and responses and on viticulture?




Comparison of VWC, Soil Texture and NDVI along a single
2-D vertical slice (along a vineyard row)
from ground surface to the water table (3m):
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NDVI vs. Sand Content

Good correlation between
NDVI and Sand Content
from 0-2.5 m bgs
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Variable soils properties as input to

Numerical Vineyard Soil Irrigation
Model (VSIM)

VSIM water balance model modified from
Forest-BGC model (Running and Coughlan, 1988)

Uses as input:
Soil texture, irrigation data, climate and ET data (CIMIS),
crop coefficient, and LAI estimated from NDVI (Johnson et al., 2000)

Calculates:
Daily and Cumulative LWP, 1rrigation needs, and date
of significant stress onset.

Averaged vs. Variable Soils - KeCS

25 4
Irrigation needs predicted

| using single average soil
texture and mapped variable
soil texture over block
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Preliminary Comparison of Sand Content
and VSIM Predictions using homogeneous and
spatially-variable soils data

MEASURED
PARAMETERS
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Variable Soil Parameters appear to make a
SIGNIFICANT difference to the prediction!



Summary

* GPR groundwave and reflection travel time data
yield high resolution, minimally-invasive and
sufficiently accurate information about soil
water content for precision agriculture applications;

* Groundwave methods are more
straightforward than reflection methods, but
they only image the shallow subsurface;

* Variable soil texture/moisture appear to

influence ecosystem parameters.

Potentially Useful for:
(1) Improved design of vineyard layout;
(2) Development of improved irrigation
strategies;
(3) Better understanding of ecosystem
dynamics and terroir.

Thanks to Field Crew:

Mike Kowalsky e _
Zhangshuan Hou e r.::. e
Ocean Tseng :‘r;~

Ken Williams o
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Wing Yee Wu
Jens Tronicke . :
Jimmy Moreno Thanks to Daniel Bosch (Mondavi), Lee Johnson
Papia Nandi (NASA/CSU)& Tom Dehlinger and Marty Hedlund

Hank Fung (Dehlinger)




End of Presentation
~Thank You~




VSIM Model: Daily

Process Flowchart

VSIM Model Inputs
1. Model Parameters (in bold required)
2. Daily CIMIS Weather Data

(Tavg, C; ETo, mm, Rain, mm)
3. Daily Iirigation (mm)

Soil Water Gains

(actual or simulated)

A 4
LAI = %(GDD)
from Tavg
A T
[ee]
A 4

Crop Coefficients
Kc= f(LAI, LWP) From

<4 - - — 4 LWP=

v

Rain + Irrigation

Simulated

Irigation

=f{soil water)
A

f(soil water)

— Water flow
= ———P Information flow

If Desired by User
Required Input

Kee =f(soil water) =Yesterday x
| -~
L Y o~ -~ : v
§O;Zaieé,i osses Soil Water
EE: ETo * Kee > i RC;a'ms - Lpsses
ETc= ETo * Ke —Rain + Irrig — ETc - ETcc

Runoff
= Soil Water - SWHC

Abbreviations:

ETc= Vine Crop Evaporation

ETcc = Cover Crop Evaporation

ETo =Daily Potential Evaporation
>(GDD) = Growing Degree Day Sum
Kc= Vine Crop Coefficient

Kcee =Cover Crop Coefficient

LAI= Leaf Area Index
LWP=Leaf/Soil Water Potential
Tavg =Daily Average Air Temp
SWHC = Soil Water-holding Capcity

Figure 1. VSIM Model Daily Process Flowchart




1) Bayesian Estimation Methodology

Generate "Prior" pdf:
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AT EACH LOCATION:

Update prior information (from wellbore data) using
geophysical information and petrophysical relationship
within a Bayesian framework.

BAYES:

* Chen, Hubbar
and Rubin
WRR 2001

f y.posterior = C L[y|vg] f y(prior)




Estimating Spatial Variability using
Measured GPR & TDR Data:
Effects of Season, Irrigation and

Measurement Tool

Variogram of 900 GPR vs. Time
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