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abstract: Scale separation crossing many orders of magnitude is
a consistent challenge in the ecological sciences. Wind dispersal of
seed that generates plant propagation fronts is a typical case where
timescales range from less than a second for fast turbulent processes
to interannual timescales governing plant growth and climatic forc-
ing. We show that the scale separation can be overcome by developing
mechanistic and statistical links between processes at the different
timescales. A mechanistic model is used to scale up from the tur-
bulent regime to hourly timescales, while a superstatistical approach
is used to relate the half-hourly timescales to annual vegetation mi-
gration speeds. We derive a semianalytical model to predict vegetation
front movement as a function of wind-forcing statistics and char-
acteristics of the species being dispersed. This model achieves better
than order-of-magnitude agreement in a case study of tree dispersal
from the early Holocene, a marked improvement over diffusion mod-
els. Plant migration is shown to depend nonlinearly on the wind
environment forcing the movement but linearly on most physiolog-
ical parameters. Applications of these analytical results to parame-
terizing models of plant dispersion and the implications of the su-
perstatistical approach for addressing other ecological problems
plagued by similar “dimensionality curses” are outlined.
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Vegetation migration in response to environmental drivers
is now receiving significant attention in studies of species
invasion and climate change and has been elevated to a
fundamental discipline in spatial ecology (Neuhauser
2001; Okubo and Levin 2001; Neilson et al. 2005). The
basic challenge confronting models of vegetation move-
ment is the large timescale separation between seed dis-
persal processes (seconds–hours) and vegetation growth
(months–years). For wind-dispersed seeds, the scale sep-
aration is exacerbated by the importance of turbulence
(which varies over fractions of seconds) governing seed
uplifting and subsequent long-distance seed dispersal
(Horn et al. 2001; Nathan et al. 2002; Tackenberg 2003;
Soons et al. 2004a, 2004b).

The contemporary approach to overcoming this “di-
mensionality curse” is to represent plant movement by
wind as a diffusive process (Klausmeier 1999; HilleRis-
Lambers 2001; Lejeune 2002; Rietkerk et al. 2002, 2004).
An advantage to this representation is that an explicit re-
lationship between the diffusion coefficient (D), the in-
trinsic growth rate (r), and the speed of propagation of
the biomass front (c) can be derived. For instance, for the
prototypical case of the Kolmogorov-Fisher equation with
a constant D, the front speed is given by 1/2c p 2(rD)
(Fisher 1937; Kolmogorov et al. 1937; Murray 2002, pp.
437–482). However, the fact that D cannot be readily in-
ferred from seed attributes (e.g., terminal velocity, release
height) and wind conditions prevents prognostic use of
such a result. Furthermore, representing plant migration
via diffusion remains questionable, and dispersal data sug-
gest a “superdiffusive” aspect to species migration and
spread, which requires an alternative treatment. Compar-
isons between measured vegetation spread rates and those
predicted by diffusion models show that diffusion under-
estimates the propagation speed of vegetation movement
(Clark 1998; Clark et al. 1998, 1999, 2001; Nathan et al.
2002; Higgins et al. 2003; Neilson et al. 2005). To match
the observed speeds of vegetation movement requires
adopting a dispersion kernel with “fat tails” in comparison
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to the Gaussian kernel underpinning classical diffusion
processes. To circumvent this limitation, several dispersion
kernels have been proposed in models of c based on em-
pirical (Clark 1998; Robledo-Arnuncio and Gil 2005;
Dauer et al. 2007), phenomenological (Neubert et al. 1995;
Kot et al. 1996; Lewis and Pacala 2000), or mechanistic
grounds (Neubert et al. 1995; Nathan and Katul 2005;
Williams et al. 2006). However, simultaneously preserving
mathematical simplicity and prognostic capability remains
elusive, and doing so is the subject of this work.

Recent studies have suggested that “upscaling” the ef-
fects of turbulent transport processes on seed dispersal
kernels from fractions of seconds to half-hourly timescales
can be achieved analytically via a mechanistic Wald ana-
lytical long-distance dispersion (WALD) model (Katul et
al. 2005), the kernel of which resembles an inverse-Gauss-
ian, or Wald, distribution. The primary inputs to the
WALD model are mean half-hourly wind speeds ( ), basicU
seed attributes (e.g., terminal velocity), and release heights.
Furthermore, a number of studies have already shown that
the distribution of , sampled over seasonal to annualU
timescales, can be approximated by a Weibull distribution,
and wind atlases document these Weibull wind parameters
spatially across continents for wind energy harvest (Troen
and Peterson 1989).

Building on these two findings for wind and its effect
on seed dispersal, we propose to replace the diffusive term
in the Kolmogorov-Fisher equation with the scaled effect
of the WALD and Weibull kernels and develop a novel
analytical solution for the vegetation front speed. As a case
study, order-of-magnitude predictions of c from the an-
alytical solution are then compared to reported vegetation
migration rates of the early Holocene period in the United
States during the period of postglacial expansion. Finally,
the broader implications of the proposed modeling ap-
proach for assessing vegetation spread rates are presented
in light of recent developments in the field of “supersta-
tistics,” which is now gaining attention in complex-systems
science (Beck and Cohen 2003).

The Model

The Basic Equations

The one-dimensional Fisher-Kolmogorov equation, which
describes the local increase and spread in space of a lo-
gistically growing population, is given by

2�P(x, t) P(x, t) � P(x, t)
p rP(x, t) 1 � � D ,

2[ ]�t K �x

where the total biomass of the species per unit area (P(x,
t), [ML�2]) grows logistically at rate r (ML�2 T�1) before

growth saturates at a carrying capacity K (ML�2), x is
distance (L), and t is time (T). To consider the spread of
a plant species due to seed dispersal, the equation can be
generalized to

�P(x, t) P(x, t) ′ ′ ′p r 1 � P(x, t) � a W(x )P(x , t) dx .�[ ][ ]�t K Q

(1)

Here, x ′ is a dummy variable denoting distance (L). At
each time step (dt), a proportion (a [T�1]) of the biomass
is spatially distributed according to a dispersal kernel W(x),
applied over a spatial domain Q. All parameters (r, K, and
a) are assumed to be constant in space and time. The r
and K parameters follow their standard interpretations
from logistic growth models. The “spread-and-survival”
parameter a is related to fecundity. For each time step and
each point in space, it defines the biomass that is spread
as seed from that point and subsequently germinates and
grows, that is, the spreading and surviving biomass. In this
formulation, a is defined as a proportion of P(x, t), and
it is assumed that . This treatment of movementa K 1
contrasts with the original Fisher-Kolmogorov equation,
in which biomass spread rates depend on the local spatial
variation in biomass and a diffusion coefficient D2 2� P/�x
(L2T�1). Equation (1) recovers the steady state solution of
the traditional Fisher-Kolmogorov equation if W(x) is a
Gaussian kernel (see “The Classical Fisher Equation and
Gaussian Dispersal Kernels” in app. A of the online edition
of the American Naturalist).

In the case of wind-dispersed biomass, fast turbulent
processes must be resolved. For integrating across these
processes to arrive at hourly timescales, the WALD model
kernel is used; it is given by

2l l(x � m)�W(x) p exp � , (2)
3 2[ ]2px 2m x

where

z r1/2l ≈ �kh(2v)

and

z Ur
m p .

Vt

The parameters relate to the characteristics of the applied
half-hourly mean wind speed field ( ) and v (definedU
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below), the seed release height of the plants (zr), and the
height of the surrounding canopy (h), and other than ,U
they are assumed to be constant in space and time. The
parameter v is defined as , where jw is the standardj /Uw

deviation of the wind velocity in the vertical direction. The
parameter v represents the importance of turbulence in
lifting the seed from the canopy versus the action of the
mean wind speed in moving the seed horizontally; Vt is
the terminal velocity of the seeds, that is, the steady velocity
at which they fall; and k is a proportionality constant re-
lating the size of turbulent eddies within the canopy to
the canopy height (Katul et al. 2005), where k is of order
1, taken as 0.6 for the purposes of this study. In a standard
boundary layer, where eddies scale with the height from
the ground, and is Von Karman’s constant; fork p 0.4
within-canopy flow conditions, however, k is expected to
be 10.4 because of wake generation and the fact that the
seed-carrying eddies no longer scale with height from the
ground. The parameters jw and are strongly correlated,U
and v can be approximated as a constant at near-neutral
atmospheric conditions just above the canopy (when heat-
ing or cooling of the air does not affect turbulent gen-
eration). The m parameter defines the mean dispersal dis-
tance, while l defines a scaling parameter.

As evidenced from equation (2), the WALD kernel yields
a multiplicative combination of a power-law term describ-
ing the dispersal kernel tails and “censoring” by an ex-
ponential distribution that accounts for gravity. For high
terminal velocities, the WALD kernel approaches a simple
ballistic model. If seed terminal velocities are much less
than the mean wind speed, then the kernel tails decay
according to a power law (∼x�3/2) and at a slower rate
than in many comparable dispersal kernels, such as the
bivariate Student’s t distribution (Clark et al. 1999). For
finite terminal velocities and mean wind speeds, the WALD
kernel is bounded, ensuring that asymptotic approaches
to constant propagation speeds exist (Mollison 1991; Kot
et al. 1996).

The Wave Speed

The motion described by the generalized Fisher-Kolmo-
gorov equation generates a traveling wave front of ex-
panding biomass. To recover the velocity of plant move-
ment, the velocity of the nonlinear wave front is needed.
To derive this velocity, the approach outlined by Kot et
al. (1996) is used, beginning with the “linear conjecture”
that the velocity of the nonlinear wave front is equivalent
to that of its linearization. This conjecture is valid for
populations that do not exhibit an Allee effect; that is, the
net growth rate is independent of population density (Mol-
lison 1991). The differential equation is linearized by as-
suming that at the leading edge of the wave, (i.e.,P/K K 1

the population is very much less than the carrying ca-
pacity), resulting in

�
dP ′ ′ ′p r P � a P(x )W(x � x ) dx , (3)�[ ]dt ��

and in discrete form, this equation becomes

�

′ ′ ′P p rdt P � a P(x )W(x � x ) dx � P , (4)t�1 t � t[ ]
��

where dt is the time step. With appropriate choice of units
in the rate terms r and a, dt can be set to unity and
canceled. If a traveling-wave solution exists, then

P (x) p P(x � c), (5)t�1 t

where c is the front speed to be determined next.
Assuming a solution of the form for the lin-�sxP ∝ e

earized equation and substituting equation (4) into equa-
tion (5) gives

�

′s(c�x) �sx �sx ′ ′ �sxe p r e � a e W(x � x ) dx � e , (6)�[ ]
��

�

′sc s(x�x ) ′ ′e p r 1 � a e W(x � x ) dx � 1. (7)�[ ]
��

Let . Then,′u p x � x

�

sc sue p r 1 � a e W(u) du � 1. (8)�[ ]
��

This expression gives the characteristic equation for the
wave front speed c. The component is the� sue W(u) du∫��

moment-generating function of the Wald distribution,
hereafter referred to as “MG(s),” which, for a finitely
bounded WALD kernel, is differentiable and defined as
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1/2
2l 2m s

MG(s) p exp 1 � 1 � , (9)( ){ [ ]}m l

2 1/2�MG(s) m exp ((l/m){1 � [1 � (2m s/l)] })
p

2 1/2�s [1 � (2m s/l)]

mMG(s)
p . (10)

2 1/2[1 � (2m s/l)]

The solution for the wave front must be real and positive
and therefore exists at the double root of the characteristic
equation, given by its derivative,

sc ′ce p raMG (s). (11)

Equation (11), combined with equation (8), provides a
parametric description of c and r:

′raMG (s)
c p , (12)

r[1 � aMG(s)] � 1
′s(raMG (s)/{r[1�aMG(s)]�1})e � 1

r p . (13)
1 � aMG(s)

Using a known value of r to solve equation (13) for s
allows the direct determination of c.

The solution is primarily dictated by the values of r, a,
l, and m. Because of the implicit nature of the equation,
a numerical root–finding method is required (see app. B
in the online edition of the American Naturalist for the
algorithm). The linear conjecture implies that a number
of more complicated models also have an asymptotic wave
speed represented by equations (12) and (13). For in-
stance, incorporating a time delay to maturity in the plants
does not necessarily affect the asymptotic wave speed, al-
though the time to reach the asymptote increases. The
results in equations (12) and (13) were derived by in-
cluding the most basic processes of growth and dispersion
but neglecting retarding factors such as predation, inter-
specific competition, and landscape heterogeneity. Thus,
the propagation rate predicted by such analysis can be
taken as an upper bound on realistic values.

Upscaling Using Superstatistics

Up to this point, the model has assumed that all param-
eters are fixed in space and time. However, there are many
sources of variability that affect these parameters over
timescales commensurate with biomass growth and the
spatial scales of migration. In the time domain, the most
pervasive is the variation in mean half-hourly ambient
wind speed, which changes on hourly timescales over a

typical range of 0–12 m s�1, that is, several orders of mag-
nitude, in the eastern United States (Van der Hoven 1957).
This exceeds variability in mean growth rate or spread-
and-survival rate, both of which vary by at most a single
order of magnitude on seasonal to interannual scales. Re-
solving the effect of the rapid variation in half-hourly mean
wind speed is necessary before attempting to understand
variability in the slower processes, and doing so is the focus
of the analytical upscaling attempts in this article. Despite
the focus on the mean wind speed temporal variability,
variability in other parameters can be considered via nu-
merical simulations. The detailed consideration of varia-
tion in multiple parameters, however, confounds analytic
tractability. Instead, a sensitivity analysis is presented to
show the effect of variability in ecological and forcing pa-
rameters on c.

The distribution of hourly (or half-hourly) mean wind
speeds, , has been well studied and is often representedU
as a Weibull distribution with scale parameter b and shape
parameter k, that is,

k
k�1ky y

p(U p y) p exp , (14)
k ( )[ ]b b

typically expressed as (Takle and Brownp U p Weib(b, k)( )
1978; Conradsen et al. 1984; Garcia et al. 1998). Hence,
variations in mean half-hourly wind speed over long time-
scales (seasonal to interannual) are accounted for by draw-
ing from a Weibull distribution. This approach is knownU
as “superstatistics” and is currently gaining considerable
interest in complex-systems science, whereby the statistics
governing variability in distributional parameters are used
to evaluate variation that is extensively spread in space or
time. The resulting distributions are analogous to using
“mixture models,” analytical composites of the distribu-
tions describing long- and short-timescale processes (Beck
and Cohen 2003; Porporato et al. 2006). The significance
of turbulent transport is clearly seen in the superstatistical
framework by constructing the dispersal kernels, at an
annual timescale, for a purely ballistic scenario (i.e., in the
absence of turbulence, using the Weibull distribution but
not the Wald) and for a turbulent-transport scenario, using
the Weibull distribution as a superstatistical input to the
WALD kernel. Turbulence causes seed transport to be ex-
tended by up to two orders of magnitude over purely
ballistic cases. The resulting dispersal kernels are shown
in figure 1.

The construction of the dispersal kernel as a mixture
of the Weibull distribution and the Wald distribution also
bears close analogy to existing phenomenological treat-
ments of vegetation dispersion. For instance, the widely
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Figure 1: Comparison of WALD and ballistic kernels on log-log plot.
Kernels are shown for annual timescales and Fraxinus pennsylvanica pa-
rameters. The ballistic kernel considers only advection of a seed falling
with terminal velocity Vt and being advected by the mean wind speed,
whose distribution is taken from the Weibull parameters. The WALD
kernel accounts for turbulence in addition to advection and results in
finite probabilities of dispersion at length scales two orders of magnitude
greater than those of the ballistic kernel.

used 2Dt kernel is a mixture of a normal and an expo-
nential distribution (Clark et al. 1999), although in the
current case, the mixture is based on the statistics of mech-
anistically derived processes. In summary, the model
achieves an upscaling from turbulent timescales to half-
hourly timescales via the WALD kernel and from half-
hourly timescales to annual timescales via the Weibull dis-
tribution of wind speeds, and it can be further upscaled
by consideration of interannual variability of Weibull pa-
rameters (fig. 2).

To use the analytical result in equations (12) and (13),
a parameterization that accounts for the Weibull variations
in and their interaction with the turbulent transportU
described by the WALD kernel is needed. What we seek
is the appropriate (or effective) wind speed with which to
parameterize a WALD dispersal kernel for wind-trans-
ported seeds over annual timescales. Numerical simula-
tions indicate that simple moments of the Weibull distri-
bution (mean, mode, etc.) grossly underestimate this wind
speed. This is because the interaction of the Wald and
Weibull distributions amplifies the effect of the tails of the
distribution. There is no simple way to parameterize this
effect, because the marginal distribution arising from a
Wald distribution forced by the Weibull distribution can-
not be obtained analytically. Given a realization of the
plant front velocity c, however, it is possible to work back-
ward (by using eqq. [12] and [13] in an inverse sense) to
infer a single value for that would reproduce this c valueU

from the numerical simulation. If this value is determined
for an ensemble of realizations of c, as generated by Monte
Carlo analysis, a distribution of such “effective wind
speeds” (Ueff) can be computed. The mean of Ueff ( )Ueff

reproduces the mean of the plant front velocities when
applied to the numerical model. To proceed by defining

preserves the flexibility of the model, which can beUeff

parameterized with (the determination of which isUeff

addressed in the next section) and appropriate WALD pa-
rameters for any combination of forest type and wind
climate. A realization of Ueff can be obtained from an
empirically measured seed dispersal kernel over annual
timescales by fitting the WALD parameterization to this
kernel. The difficulties associated with measuring the tails
of the dispersal kernel, however, would likely cause this
sample of Ueff to be underestimated, while reconstructing
the distribution of Ueff would be highly labor intensive
(Bullock et al. 2006). The disparity between the applied
Weibull distribution and the distribution of Ueff resulting
from its application to the logistic-WALD model is shown
in figure 3.

Having defined Ueff, we proceed by constructing a re-
lationship between the Weibull parameters and the effec-
tive velocity to allow prognostic usage. A wide range of
wind distributions and their effect on c were explored by
varying the parameters of the Weibull distribution in a
range of , (covering the range of plau-b � [1, 3] k � [1, 4]
sible values for winds). Distributions of c were obtained
from a Monte Carlo simulation with 500 realizations for
each combination of Weibull parameters (see “Numerical
Simulations” in app. A of the online edition of the Amer-
ican Naturalist for details of numerical simulations), and
distributions of Ueff were computed from these using equa-
tions (12) and (13) in an inverse sense. Weibull, gamma,
and normal distributions were fitted to the resulting Ueff

distribution, and goodness of fit was assessed using the
Akaike Information Criterion (AIC; Akaike 1974). A re-
lation between the distribution of Ueff and the distribution
of mean applied wind speeds was empirically derived, us-
ing a curve-fitting algorithm that tested multiple func-
tional forms of the fitting functions and returned those
with the least square error (Phillips 2007). Tenth- and
ninetieth-percentile bounds on the parameters were de-
rived numerically from the fitted distribution and used to
provide bounds on the estimate of Ueff. The combination
of the analytical results and these regression equations pro-
vided a closed-form semianalytical model combining in-
formation about the wind climate and the vegetation prop-
erties to predict a likely range of wave speeds for vegetation
dispersal.
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Figure 2: Conceptual model for scaling of biomass growth and dispersal. A, The Weibull and (conceptually) a lognormal distribution generate U
values that force the WALD kernels at different timescales. B, The WALD kernel (showing the probability density function of seed dispersal distances)
results from a distribution of seed trajectories and provides the scaling between turbulent and half-hourly timescales. C, At longer timescales, the
increasing variability results in “fatter” tails in the WALD kernel. Computation of the vegetation front speed may proceed numerically via Monte
Carlo simulation, where a mean wind speed is repeatedly sampled from the Weibull distribution, the hourly WALD kernel is computed, and the
process is repeated until the asymptotic front speed is reached. This is repeated ∼500 times to predict the front speed. D, More expediently, the

parameter can be computed and used to directly describe the annual (or, conceptually, the interannual) WALD kernels, which are then solvedUeff

analytically for the vegetation front speed.

Case Study: North American Postglacial Expansion

The palynological record from the early Holocene epoch
provides an ideal case study of vegetation migration because
trees expanded their range in the wake of retreating glaciers
(Delcourt and Delcourt 1987; MacDonald 1993). This rec-
ord is useful because it extends over a sufficient temporal
and spatial area to allow spread rates to be clearly deter-
mined, and, unlike contemporary records, it is not con-
founded by anthropically enhanced dispersion. We used the
analytical version of the logistic-WALD model to examine
the migration of eight wind-dispersed species (four Acer
[maple], two Fraxinus [ash], one Pinus [pine], and one
Betula [birch] species). Our intent was not to obtain a one-
to-one comparison but rather to demonstrate that the order
of magnitude of spread rates could be independently derived
from what is currently known about these species and as-
sumed wind conditions. Seed terminal-velocity data were

obtained from the literature (Green 1980; Matlack 1987,
1992; Nathan et al. 2002; Williams et al. 2006); however,
biomass growth rates were not available. We estimated the
biomass at maturity using allometric equations (Jenkins et
al. 2003), in conjunction with diameter at breast height and
stand age at maturity (USDA 1990), and used these as first-
order estimates of growth rate. For the smaller tree Acer
negundo (box elder), which was outside the range of species
considered by Jenkins et al. we adopted species-specific al-
lometric equations (Schlaegel 1982). The constants used are
shown in table 1.

The vegetation expansion consisted of two phases: an
initial replacement of low tundra by boreal forests followed
by replacement of boreal forest with deciduous forests
(Delcourt and Delcourt 1987). Selection of wind data
therefore must consider both the expansion into open tun-
dra, most applicable to Betula and Pinus species, and the
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Figure 3: A, Distribution of mean half-hourly wind speeds ( ), with the mean of the distribution shown. B, Distribution of effective wind speedsU
(Ueff), derived from numerical simulations of the logistic-WALD model, for the forcing shown in A. Note that the mean of the forcing wind speed
(dashed line) underpredicts the distribution of effective wind speeds. density function.pdf p probability

later expansion into forested areas, applicable to Acer and
Fraxinus species. Acer species also expanded their range
significantly into prairies in the Midwest, and thus the
open conditions may apply to this genus as well. Accord-
ingly, the mean, tenth- and ninetieth-percentile bounds
on Ueff were estimated from a long-term half-hourly mean
wind speed records collected at the Duke Forest (near
Durham, NC) in a grass-covered forest clearing and above
a hardwood canopy, and front propagation data are pre-
sented for both these conditions for all species (“Wind
Data and Wind Statistics from Duke Forest” in app. A of
the online edition of the American Naturalist). The value
of v was determined by assuming that the wind statistics
should be derived from above the forest canopy. An es-
timate of was obtained from typical wind sta-v p 0.36
tistics above a dense canopy. These estimates were then
used in the semianalytical model to calculate the vegetation
wave front propagation speed. Calculated wave speeds
were divided by 2p to convert between the one-dimen-
sional analytical result and the two-dimensional spread
rates given by the pollen data, assuming random wind
direction.

A sensitivity analysis on the endogenous variables in the
logistic-WALD model was undertaken (“Sensitivity Anal-
ysis of the Semianalytical Model” in app. A of the online
edition of the American Naturalist). The major findings of
this sensitivity analysis (discussed further in “Results”),
were that the front speed is linear in and that for smallUeff

values of the spread-and-survival parameter a (!0.01), the
choice of a does not significantly alter c but alters only
the time taken to reach the asymptote. Accordingly, a was
set to , an order-of-magnitude estimate at half-�65 # 10
hourly timescales. To assess the suitability of using the

Duke Forest wind data as a surrogate for data across the
range of the postglacial expansion, a further sensitivity
analysis was undertaken on the Weibull parameters. This
analysis indicated that the likely variability in acrossUeff

a sample of forested sites in North Carolina, Indiana, Mas-
sachusetts, and Maine was of the order of 8% and that
this was directly comparable to the likely variation asso-
ciated with changes in land cover type (9%). Given the
linearity of the front speed in , the geographic variabilityUeff

in the Weibull statistics is expressed as uncertainty of less
than 10% in the biomass front speed.

Results

Generation of Ueff from Weibull Wind Parameters

Based on the AIC, a gamma distribution was the best fit
to the Ueff distribution arising from the Monte Carlo sim-
ulations. Hence, in a first-order estimate of Ueff, a gamma
distribution was used, with the distribution gamma (q, n)
described as

1
q�1 �x/np(xFq, n) p x e , (15)

qn G(q)

where G is the gamma function. The nonlinear regression
between the Weibull (b, k) parameters for and the ef-U
fective wind speed Ueff generated functions to predict the
mean of Ueff (denoted ), given the wind statistics. TheUeff

gamma parameters q and n, which are required to specify
the distribution of Ueff, were also determined. High co-
efficients of determination (r2) were achieved for all re-
gressions (table 2; fig. 4).
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Table 1: Data used to parameterize the logistic-WALD model, front speed results from the pollen record, and the predicted speeds
from the logistic-WALD model

Species
DBHa

(cm)

Mature
biomassb

(kg)

Est.
growth

rate
(kg

year�1)
Vt

c

(m s�1)
zr

d

(m)

Canopy
height

(m)

Pollen
record
wave

speed
(m year�1)

Predicted wave
speed:

forest–open
(m year�1)

Predicted wave
speed:

forest–forest
(m year�1)

Mean Err. boundse Mean Err. boundse

Acer rubrum 8.9 21 2.6 .67 10 17.2 126–200 218 134–334 262 238–384
Acer saccharum 19 143 3.6 1.0 10 17.2 126–200 131 81–201 158 143–231
Acer negundo 60 114 1.9 .92 9.5 19 126–200 94 58–144 113 102–165
Acer saccharinum 29.7 341 7.9 .87 12.5 25 126–200 581 359–888 696 634–1,021
Betula lenta 20.1 137 3.4 1.6 15 20 212 59 37–90 71 65–105
Fraxinus americana 15.8 91 2.5 1.4 13.1 18.7 123 52 31–78 62 56–91
Fraxinus pennsylvanica 20 162 7.7 1.6 11.9 17 123 111 69–170 133 121–195
Pinus taeda 23 164 8.2 .7 11.7 14.6 81–400 542 335–829 650 591–953

Mean 169 224 268

Note: The error bounds shown incorporate the tenth- and ninetieth-percentile estimates of Ueff and an 8% error associated with geographic variation in

wind properties; k was set to 0.6 for the simulations.
a Diameter at breast height.
b Mature biomass of a single tree.
c Terminal velocity.
d Seed release height.
e Error bounds due to geographic variation.

Table 2: Regression equations and r2 (coefficient of determination) values for , q, and n asUeff

functions of the Weibull parameters b and k

Parameter Regression equation Regression coefficients r2

Ueff �0tanh(k) � �1(b/k1.5) � �2 �0 p .8187, �1 p 3.4233, �2 p .0963 .99
qgamma g0[tan�1(b)k2] � g1(k2/b) � g2 g0 p 8.3426, g1 p 6.3476, g2 p 10.9000 .99
ngamma J0(tanb/k2) � (J1tanhb)/k2 � J2 p0 p �.0086, p1 p .4172, p2 p �.0184 .88

Applications to the Case Study

The mean speed of vegetation movement predicted in the
case study was within a factor of 5 or better of that in the
palynological record for all species considered (table 1).
The sensitivity analysis of the wind statistics indicated that
there is a linear correlation between the Weibull param-
eters, when compared across multiple sites, and that this
correlation damps the effect of changes in the wind sta-
tistics. Over the area of interest, this resulted in a near-
linear sensitivity of Ueff to the Weibull parameters and
constrained the error associated with geographic variation
to the order of 10% (see “Wind Data and Wind Statistics
across Multiple Regions,” fig. A2, and table A3 in app. A
for details). This uncertainty did not greatly alter the qual-
ity of the predictions by comparison to the mean cases.
The sensitivity analysis of endogenous parameters indi-
cated that the dependence of the predicted wave speeds
was approximately linear in the growth rate (r) and the
wind speed applied ( ), nearly linear in the canopyUeff

height (h) and the vertical velocity standard deviation (jw),
and nonlinear in terminal velocity (Vt), release height (zr),
and the spread-and-survival parameter (a). In particular,

for values of a less than 0.01, the propagation speed was
almost insensitive to further decreases in a over several
orders of magnitude (see “Sensitivity Analysis of the Semi-
analytical Model” in app. A for details).

Discussion

By linking the Weibull mean wind statistics to the de-
scription of the WALD parameters through , the half-Ueff

hourly timescale of wind variability is scaled up to the
timescales of biomass growth. In analyzing the numerical
results to achieve this scaling, our goal was to ensure that
direct analytical implementation was achievable. This mo-
tivated the approximation of the distribution of Ueff as
gamma (q, n). In reality, the distribution of Ueff is a trans-
formation of the Weibull distribution via the WALD kernel
and the logistic equation with no known analytical rep-
resentation and cannot be fully represented via a two-
parameter approximation such as the gamma distribution.
Accordingly, the quality of the gamma distribution in de-
scribing Ueff varies with the parameters of the Weibull
function, resulting in some inevitable error. However, the
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Figure 4: Pairwise plot of predicted via regression and .U Ueff eff

linear dependence of the wave speed on Ueff ensures that
the effect of these errors is first-order only, meaning that
the achieved fit is acceptable, given the aims of the model
to provide a tractable approach to estimating spread rates.
If greater accuracy is needed, Ueff should be calculated
more precisely via numerical simulations.

The logistic-WALD model reproduced vegetation prop-
agation speeds to a good approximation without invoking
isolated extreme events (e.g., hurricanes) as the mecha-
nism promoting long-distance dispersal. Rather than re-
lying on such phenomena, the logistic-WALD model im-
plies that long-distance dispersal is an expected outcome
of the interaction between seed movement and the com-
plex wind statistics across a range of timescales. Mathe-
matically, this is the result of the interaction between the
tails of the Weibull (whose genesis is mesoscale- and
weather-related variation about ) and WALD (whoseU
genesis is turbulent dispersion) distributions, as outlined
in figure 2.

Several limitations to the data used in the postglacial-
expansion case study prevented a one-on-one comparison
between predicted and recorded biomass propagation
speeds. While terminal-velocity data were measured for all
species, other parameters, particularly the growth rate,
were estimated through generic allometric equations and
basic assumptions such as a constant growth rate through-
out the plant’s life span.

Results presented for wind data collected both from a
forest clearing, most applicable to early-colonizing species,
and from a forest canopy, as applicable to later-succession
species, were within the order-of-magnitude limits sought.
The linear effect on c of changing land cover type or geo-
graphic location was small, at ∼10%, and by comparison
to the uncertainties associated with approximating the pa-

leoclimatological record with contemporary wind statis-
tics, this variation can be considered negligible. For con-
temporary applications of the model, results could be
improved through appropriate spatial averaging of wind
statistics. However, it should be noted that errors remain
in approximating the postglacial-expansion wind statistics
by current wind distributional properties of the Weibull
distribution.

The logistic-WALD model is a simplified representation
of some of the complex processes that govern species mi-
gration and currently constitute an active topic of research
(Lewis and Pacala 2000; Moorcroft et al. 2006). Despite
the simplicity of the model, it contains an appropriate
treatment of the multiscale processes involved, and its re-
sults hold clear analogies to more complex representations.
As outlined in the introduction to this article, the omission
of retarding processes, such as competition, from the pro-
cess description allows us to consider the derived speed
to be a maximum, obtained under ideal conditions for
invasion. As such, it is analogous to the concept of “in-
vasion by extremes,” in which the most rapidly transported
seeds become responsible for invasion and population es-
tablishment (Clark et al. 2001). Using fat-tailed dispersal
kernels, Clark et al. were unable to reproduce the Holocene
invasion speeds for a range of species without artificially
increasing seed survival rates (the a parameter in our for-
mulation). Our finding that c loses sensitivity to a as a

becomes arbitrarily small allows the logistic-WALD model
to recover the appropriate order of magnitude of the
spread rates without such artificial increases in survival.
Provided that dispersal occurs over a sufficiently long pe-
riod to allow the asymptotic speed to be reached, low seed
viability does not necessarily restrict the vegetation front
movement but restricts just the timing at which the max-
imum front speed occurs. Note that the a parameter ad-
dresses the distribution and establishment of seed biomass
only; increasing seedling mortality effectively reduces the
growth rate parameter r in the logistic-WALD model, with
resulting linear reductions in the wave speed.

Stochastic studies of plant movement via long-range
dispersal events have highlighted the importance of the
“outlier-expansion” effect, in which outlier populations
establish remotely from the main population, remain ef-
fectively stationary for some period of time, and then ex-
pand to close the gaps between the populations, often with
remarkable speed (Shigesada et al. 1995; Clark 1998; Clark
et al. 1998, 2001; Neilson et al. 2005; Kawasaki et al. 2006).
In continuous terms, the logistic-WALD model accom-
plishes this expansion by a very similar mechanism. Small
quantities of biomass are distributed at long distances from
the established population, and the biomass associated
with these populations remains small (in comparison to
the carrying capacity) for a considerable period of time.
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These small quantities can be conceptualized as repre-
senting a distribution of potential outlier populations away
from the starting point. As the wave front passes these
points, a large and rapid increase in biomass occurs, anal-
ogous to the expansion phase of the outlier-expansion
model.

Within the many diffusion models of biomass move-
ment, parameterization of the diffusion coefficient remains
a challenge and a source of uncertainty (Okubo and Ka-
reiva 2001; Murray 2002, pp. 437–482). Exemplified by
“Reid’s paradox” (Clark et al. 1998), the effective diffusion
coefficients needed to reproduce typical biomass migration
rates exceed those derived from experimental observations
relying on spread distance and timescale arguments (i.e.,
approximations of diffusion coefficients D as ) by or-2L /T
ders of magnitude. For wind-dispersed plants, the logistic-
WALD model offers a way to improve the parameterization
of such “effective” diffusion coefficients. The WALD kernel
can be parameterized using local wind statistics and the
characteristics of the dominant plant species under con-
sideration. The semianalytical solution can then be used
to give the asymptotic wave speed c. An effective diffusion
coefficient, should it be needed, can then be determined
using the relationship . The use of the logistic-2D p c /4r
WALD model to derive an effective diffusion coefficient
in these cases provides a new and defensible approach to
parameterization of existing diffusion-based models. For
algorithmic implementation of this scheme to determine
c and effective diffusion coefficients, see appendix B.

Conclusion

Our aim in formulating a biomass dispersal model based
on the WALD kernel was to mimic the simplicity of dif-
fusion as a description of biomass movement, that is, an
expression approaching the simplicity of ,1/2c p 2(rD)
while avoiding the anomalous results produced by diffu-
sion and improving spread rate parameterization. This ap-
proach required that, with the exception of the mean wind
speed, parameters be treated as constant in space and time.
The logistic-WALD model achieves the improvements for
wind-dispersed biomass in three ways. First, the upscaling
from turbulent-transport timescales to biomass growth
timescales is now explicit and mechanistic rather than as-
sumed or empirically fitted to one particular site. Second,
the logistic-WALD model can be completely parameterized
from independent data: knowing sufficient information
about the species’ growth rate, the wind climate in which
it grows, and its seed attributes allows upper bounds on
the speed of the biomass front to be estimated. Third, the
logistic-WALD model is shown to provide reasonable es-
timates of known biomass dispersal rates for the early
Holocene expansion, circumstances in which diffusion-

based estimates are known to grossly underestimate such
data.

The superstatistical approach adopted here, in which
processes are related across scales through deriving rela-
tionships between their statistical descriptors, is now show-
ing promise in many applications, including the prediction
of rainfall on interannual timescales (Porporato et al.
2006) and improved descriptions of turbulent motion
(Beck and Cohen 2003). Future application of such ap-
proaches could allow a similarly simple model to account
for variability at the interannual scale. Long–time series
data of wind measurements that capture several decades
of variability at multiple spatial scales are starting to be-
come available (Kalnay et al. 1996), providing appropriate
data sets for examination of interannual variability in a
“normal” setting and thus baselines against which to eval-
uate future trends in the wind climate. Studies of potential
changes to the wind climate show an emerging trend of
change in the extremes of wind climate, ranging from
fewer extreme events associated with weakening of the
Asian monsoon to expectation of increasing severity of
hurricane activity associated with warmer sea surface tem-
peratures (Emanuel 1987; Knutson and Tuleya 1999; Lun
and Lam 2000; Walsh 2004; Webster et al. 2005; Pryor et
al. 2006; Xu et al. 2006; Yan et al. 2006). The sensitivity
of wind dispersal to extremes of the wind regime means
that these changes have important implications for plant
migration, which can now be accounted for within a pro-
posed framework of “hierarchical superstatistics.” Here the
superstatistics of the Weibull distribution would be eval-
uated from time series data and scaling relationships de-
veloped to predict over longer timescales, as depictedUeff

conceptually in figure 2. Such hierarchical superstatistical
models are expected to find broad applicability in a wide
range of ecological modeling problems in which the “di-
mensionality curse” impairs predictive capacity and im-
portant processes span a range of timescales from fractions
of seconds to multiple years.
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