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[1] The spatial organization of biomass resulting from plant-water feedbacks in arid
ecosystems, ‘‘patterned vegetation,’’ provides a macroscopic signal of nonlinear plant-
water interactions and ecosystem health. Current models that reproduce such patterning
assume diffusive biomass movement but do not account for realistic transport through
seed dispersal. An adaptation of an existing three-equation model that accounts for the
interactions between overland flow, subsurface flow, and biomass dynamics is used to
investigate the impact of representing biomass spread with realistic dispersal kernels
(a ‘‘kernel-based method’’). Model results indicate that dispersion behavior changes the
spatial organization of vegetation, destabilizing the regular patterns predicted by diffusion-
based models. The kernel-based approach provides a closer match to power spectra
derived from a remotely sensed image of patterned vegetation when compared to their
diffusion-based counterpart. Potential feedbacks between the presence of spatial patterns
and selection of optimal seed dispersal length scales are also investigated.
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1. Introduction

[2] Self-organization of vegetation into regular patterns
has been observed in arid and semiarid ecosystems world-
wide, across a wide variety of plant species and forms, and
on a range of soil types [Tongway and Ludwig, 2001;
Rietkerk and van de Koppel, 2008]. Patterned vegetation
was first noticed by air in the 1950s [Clos-Arceduc, 1956],
and the intriguing landforms generated extensive field
studies that identified many of the important commonali-
ties of patterned landscapes: an arid to semiarid climate,
high-intensity rainfall, minimal soil type differences
between vegetated and bare zones beyond those immedi-
ately attributable to the presence of vegetation, noticeable
crusting in the bare zones, and a dependence on a topo-
graphic gradient that resulted in a transition from anisotropic
banding patterns to isotropic ‘‘labyrinth,’’ ‘‘gap,’’ and
‘‘spotted’’ patterns as the slope declined to less than
0.2% [d’Herbes et al., 2001; Galle et al., 2001; Tongway
and Ludwig, 2001; Rietkerk et al., 2002].
[3] These features suggest that patterns arise as an emer-

gent feature of nonlinear plant-water interactions, where
water availability increases beneath vegetation, as a result of
the suppression of growth of biological soil crusts [Belnap
et al., 2001], the presence of roots and macropores increas-
ing infiltration rates and potentially plant canopies shading
the soil surface, reducing soil evaporation [Scholes and
Archer, 1997]. The net result is a locally elevated soil
moisture resource in the proximity of vegetation [Bromley
et al., 1997; Valentin et al., 1999]. An extensive literature

has examined the importance of patterned landscapes as
resource harvesting structures [Greene et al., 2001;
Mauchamp et al., 2001; Thiery et al., 2001; Rietkerk and
van de Koppel, 2008], but only in the last decade has
theoretical attention been given to these landscapes as
dynamic nonlinear systems in which the self organization
of vegetation can be generically studied despite large differ-
ences in ecosystem types [Thiery et al., 1995; Klausmeier,
1999; HilleRisLambers et al., 2001; von Hardenberg et al.,
2001; Lejeune, 2002; Rietkerk et al., 2002; Gilad, 2004;
Rietkerk et al., 2004]. Initially this approach was driven by
phenomenological models of facilitation and competition
between vegetation structures [Lefever and Lejeune, 1997]
then through coupling biomass and soil moisture budgets
explicitly [Klausmeier, 1999; von Hardenberg et al., 2001].
However, it has largely been the inclusion of surface water
transport in these models that reproduced realistic patterning
length scales, and these three-component models represent
the current state of the art with respect to process simulation
of patterned landscapes [Rietkerk et al., 2002; Gilad, 2004;
Yizhaq et al., 2005]. The existing model frameworks have
been refined with respect to the importance of stochasticity
in rainfall [D’Odorico et al., 2006a, 2006b; Ursino and
Contarini, 2006] and aspects of plant physiology [Ursino,
2007] pertinent to photosynthesis, respiration, and stomata
response to mean vapor pressure deficit [Kefi et al., 2008];
as well as soil properties [Ursino, 2005]. A critical finding
from this effort has been that patterned landscapes are
bistable states that may undergo ‘‘catastrophic ecosystem
shifts’’ to a desertified state from which the previous
patterned condition cannot be recovered [Rietkerk et al.,
2004; Kefi et al., 2007a, 2007b]. Research into patterned
landscapes has therefore shifted perspective from the orig-
inal questions concerning the maintenance and function of
these intriguing systems to research that aims to use the
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condition of the emergent patterns as an indicator of
ecosystem health. A critical component of research into
these patterns involves developing the capacity to infer the
state of the ecosystem given ‘‘observable’’ patterns of
vegetation. Such inference is of necessity based upon
models that contain the appropriate representation of the
key processes occurring within the ecosystem.
[4] In evaluating the state of the science in this manner,

two observations can be made about key knowledge gaps.
The first is that despite extensive refinement of the models
used, an evident difference remains between modeled and
real vegetation patterns, in that the former are smooth, while
the latter display a conspicuous degree of disorder
(Figures 1a and 1e). The second is that the representation
of plant movement, critical to the formation of a pattern, has
not been considered in detail, but instead has been repre-
sented via diffusion in almost all models formulated, or
accounted for phenomenologically by representation of
long-range interactions [D’Odorico et al., 2006a]. Diffusion
results in a representation of biomass movement that is
localized and depends upon biomass gradients to determine
the relative rate of transport. In contrast, real plant popula-
tion movement, assuming sexual reproduction, is driven by
the production and transport of seeds. These observations

lead to an initial question, namely, is the disorder observed
in real patterns representative of underlying randomness at
small scales as is known to exist in soil properties, or might
it arise because biomass movement is less diffusive than its
representation in current models?
[5] To answer this question, we couple a ‘‘dispersal

kernel,’’ defined as the probability distribution of seed
distances from their parent source [Clark, 1998; Clark et
al., 1998, 1999] to existing pattern formation models as an
alternative to diffusion. Dispersal kernels describe both
local and nonlocal movement and are independent of
biomass gradients. The use of a dispersal kernel differs
somewhat from previous kernel-based models [Lefever and
Lejeune, 1997; D’Odorico et al., 2006b] in which the kernel
encodes the interactions responsible for local facilitation
and long-range inhibition of vegetation growth, i.e., the
genesis of pattern formation [Murray, 2002]. Instead, the
dispersal kernel approach solely dictates the rates and
spatial scales of biomass transport, while the facilitative
and inhibitory processes are determined by the interactions
of biomass and water, just as in the diffusion-based model.
The coupling of seed dispersal kernels with pattern-forming
models can address several questions fundamental to
understanding vegetation patterns in arid and semiarid

Figure 1. (a) An image taken from Google Earth at 12�19055.4000N and 3�10049.9000E in Niger on
28 January 2006. (b) A subsampling and smoothing of the image, which was then used as the initial
condition for the simulation results (Figures 1c–1e). (c) The results from the dispersion model, (d) the
diffusion model with stochastic soil properties, and (e) the original diffusion model. The parameter
values used were c = 10, gmax = 0.05, k1 = 5, Dp = 0.1, a = 0.2, k2 = 5, Wo = 0.2, rw = 0.2, Dw = 0.1,
Do = 100, R = 1, d = 0.23.
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systems: Can patterns be maintained in the absence of a
diffusive representation of biomass? What is the ‘‘direction’’
of pattern evolution, toward or away from more continuous
cover? Finally, could feedbacks exist between dispersal
ecology, soil moisture redistribution, and pattern formation
in these highly organized ecosystems?
[6] The paper proceeds by outlining the basic features of

dispersal ecology in arid ecosystems first, then addressing
the incorporation of a seed dispersal kernel into a model of
pattern formation, which is used to address the questions
outlined above.

2. Seed Dispersal

[7] The dispersal of seed determines ecological character-
istics of plants and their communities, such as gene flow
and the genetic structure of populations [van der Pijl, 1972;
Cain et al., 2000], the survival and success of subsequent
generations of plants, rates of expansion into new terrain
and the spatial distribution of plants at multiple spatial
scales in terms of habitat, range, and spatial organization
within the landscape [Clark, 1998; Clark et al., 1998,
2001]. Dispersal is broadly characterized by a canonical
length scale over which seeds move and by a dispersal
vector that transports them. The length scales of dispersal
vary from highly localized (<1 m) to long distance (LDD,
100–102 m). Transporting vectors change the statistical
properties of kernels, with exponential kernels induced by
simple ballistics, longer range and often leptokurtic kernels
associated with wind or water dispersal, and with the
stochastic, anisotropic and potentially nonrandom transport
by insects, birds, or animals often difficult to represent via
kernel approaches [van der Pijl, 1972; Ellner and Shmida,
1981; Fragoso, 1997; Russo et al., 2006; Thompson and
Katul, 2008].
[8] Dispersal in desert plants typically occurs over short

length scales [Davidson and Morton, 1984; Chambers and
MacMahon, 1994] with many species’ seeds lacking adap-
tations to promote dispersal (atelechory) or exhibiting
adaptations that limit dispersal (antitelechory) [van der Pijl,
1972; Ellner and Shmida, 1981]. Many desert perennial
species rarely propagate from seed, and asexual reproduc-
tion is common [Abrams, 1988; Thiombiano et al., 2003].
The dispersal ecology of species comprising patterned
vegetation is variable, and has not been comprehensively
studied [Montana et al., 2001]. Some species, such as
Combretum micranthum (West Africa), appear to have
adaptations for secondary wind dispersal, with round-
winged seeds that ‘‘tumble’’ along the ground [Midgley,
1998]. Other species, such as Acacia aneura (Australia), are
dispersed primarily by ants [Davidson and Morton, 1984].
Several of the species involved in pattern formation have
the capacity to reproduce asexually (e.g., Combretum
micranthum, Guiera senegalensis, Pleuraphis (formerly
Hilaria)murtica) [Couteron and Lejeune, 2001; Thiombiano
et al., 2003; R. Uchytil, Pleuraphis mutica, in Fire Effects
Information System, Fire Sciences Laboratory, Rocky
Mountain Research Station, Forest Service, U.S. Department
of Agriculture, 1988, available at http://www.fs.fed.us/
database/feis/plants/graminoid/plemut/all.html]. However,
seedling recruitment is often described within patterned
sites suggesting that seed dispersal is an important process
in these landscapes. Where soil crusts are well formed, they

may pose an obstruction to seedling recruitment [Prasse
and Bornkamm, 2000] and indeed Montana et al. [2001]
show that where the slope of the ground is significant
(>0.2%) the seed bank tends to lie within vegetated areas,
as a result of secondary transport by runoff from the
interband. This study, however, considers only cases where
there is no significant slope, so the velocities of surface
water and seed transport by water are relatively low and
oriented toward local vegetated sites. Secondary transport
thus effectively shortens dispersal length in this scenario
and is not considered explicitly here. For the case of a
slope grade large enough to impose a preferential direction
of flow, alternative and anisotropic descriptions of seed
transport are needed.

3. Methods

3.1. Ecohydrological Model

[9] The study is based on an adaptation of a simple
spatial model of arid ecosystem vegetation-water relations
developed by HilleRisLambers et al. [2001] and Rietkerk et
al. [2002]. The original model equations are

@P

@t
¼ c gmax

W

W þ k1
P � d P þ Dp DP;

where P is the plant biomass in g m�2;

@W

@t
¼ aO

P þ k2Wo

P þ k2
� gmax

W

W þ k1
P � rwW þ DwDW ;

where W is the soil water depth in mm; and

@O

@t
¼ R� aO

P þ k2Wo

P þ k2
þ DoDO;

where O is the surface water depth in mm. The model
parameters are c (water uptake to plant growth relation,
g mm�1 m�2), gmax (maximum specific water uptake mm
m2 g�1 day�1), k1 (half saturation constant of water uptake,
mm), d (death rate, day�1), Dp (biomass diffusion
coefficient, m2 day�1), a (maximum infiltration rate day�1),
k2 infiltration (half saturation constant g m�2), Wo (water
infiltration in absence of plants, []), rw (timescale of water
loss due to evaporation and drainage, day�1), Dw (soil water
diffusion coefficient, m2 day�1), R (precipitation, mm
day�1); Do (surface water diffusion coefficient, m2 day�1)

and D is the Laplacian, @2

@x2 þ
@2

@y2

� �
, where x and y are

Cartesian coordinates.
[10] The model represents a positive feedback between

water and carbon where infiltration relates to biomass
density in a Michaelis-Menten sense [Briggs and Haldane,
1925]. Soil water uptake increases with vegetation biomass,
resulting in a negative feedback due to competition for the
limited available water. Spatial movement of water and
biomass is represented as diffusive. The model produces
spatial patterns with a characteristic wavelength following
the typical spot-labyrinth-gap sequence as water availability
increases. This pattern sequence is shown in Figure 2c for
the original model equations.
[11] To refine the representation of biomass transport, the

diffusion term in the P equation is replaced by a convolution
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of a dispersion kernel and standing biomass, defining the
seed rain about a parent plant [Thompson and Katul, 2008].
This adjustment to the biomass equation removes the
dependence of the spatial movement on biomass gradients
and allows for a variable length scale for dispersal, giving

@P

@t
¼ c gmax

W

W þ k1
P � dP

� �
1� fð Þ

þ f
ZZ

J x� x0; y� y0ð ÞPðx0; y0Þdx0dy0
� �

;

where J is the dispersal kernel (that can account for
secondary dispersal mechanisms if known), f represents the
proportion of standing biomass dispersed per unit time, x0 and
y0 define the distance seeds move from the parent, integrated
over the domain.
[12] Determining f is problematic, as fecundity values

vary strikingly between individuals and species, may
change with environmental conditions, and are not typically
reported as a percentage of biomass. The proportion of
biomass that is allocated to reproduction can be as much as
50% for annuals, but is far less for many species [Aronson
et al., 1993]. Determining the duration over which dispersal
occurs complicates the conversion of this allocation to a
rate. Assuming that the period during which a plant dis-
perses seed ranges from 1 month to 1 year, and that 1–50%
of the standing biomass is allocated to seed, then f can be
considered to range from 10�4–10�2 day�1. A plausible
value in this range, 2.5 � 10�3, was used for numerical
simulations.

[13] A number of process- and timescale-related limita-
tions apply to the model. Many of these have been
addressed explicitly in other studies [see, e.g., Ursino,
2005, 2007; Ursino and Contarini, 2006] and are also
discussed in Appendix A. The most significant concern is
that representing the dynamics of a highly stochastic system
using a deterministic model may misrepresent the system’s
drivers. This concern was addressed by linearizing the
model equations at steady state and showing that the mean
rainfall predicts the temporally averaged biomass response
under stochastic rainfall conditions. This result is subject to
limitations, as sporadic rainfall can annihilate the vegetation
patterns and render further predictions or inference moot,
but justifies the use of mean rainfall as a driver for this
simple model at the timescales on which biomass changes.
Details of the linearization are available in Appendix A.
Other studies addressing the question of stochasticity and its
relationship to patterning have concluded that stochastic
rainfall may be a driver of pattern formation [D’Odorico et
al., 2006b, 2007] and that while stochasticity changes the
type of pattern formed for a given mean rainfall, it does not
influence the overall shape of the patterns [Ursino and
Contarini, 2006]. Finally, the hydrological processes repre-
sented in the model are also simplistic and based upon
diffusion. Improvement of process representation in the
hydrology and their integrated effects to timescales com-
mensurate with biomass changes is an outstanding problem
in this research field.

Figure 2. Simulation results of dimensionless biomass along a gradient of decreasing water stress for
(a) the dispersion model with random initial conditions, (b) the dispersion model with random point
initial conditions, and (c) the original diffusion model. The initial condition (IC) for each set of models is
given. Length scales are shown on the left and the colors indicate the dimensionless biomass density
(nondimensionalized by the biomass saturation constant for water infiltration). Increasing R/d (rainfall to
death rate) decreases soil moisture stress on growth. Note that the color scale differs between plots. The
parameter values used were c = 10, gmax = 0.05, k1 = 5, Dp = 0.1, a = 0.2, k2 = 5,Wo = 0.2, rw = 0.2, Dw =
0.1, Do = 100, R = 1.
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3.2. Dispersion Kernels

[14] A Wald kernel, defined by a Wald or Inverse Gauss-
ian distribution was used for the simulations here. The
kernel is given in radial coordinates by:

JWald ¼
1

4pdr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2p r � r0ð Þ3

 !vuut exp
�l r � r0ð Þ � mð Þ2

2m2 r � r0ð Þ

( )
;

where m > 0 is the mean of the distribution, l > 0 is a
scale parameter, r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, dr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
and r0 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02
p

. The variance of this distribution is given by
s2 = m3

l .
[15] The Wald kernel can be used to represent any

dispersion length scale. In the local limit, it approximates
a ballistic spread of seed about the parent and replicates the
scale and spatial pattern of a Laplacian (i.e., the spatial term
responsible for diffusion). In the nonlocal limit, the kernel
allows for wind-dispersed seeds to travel long distances
[Katul et al., 2005].

3.3. Numerical Simulations and Methods of Analysis

[16] The numerical simulations performed are summa-
rized in Table 1. All simulations were run on a 100 � 100 m
grid with 2 � 2 m cells and periodic boundary conditions
with a timestep of 0.008 d. Simulations initialized with a
remote sensing image were run on a 550 � 700 m grid with
2.8 � 2.8 m cells. Numerical calculations were performed
using an Euler forward difference scheme, and the convo-
lution between the biomass and the dispersal kernel was
performed in the Fourier domain using a fast Fourier trans-
form algorithm for two-dimensional convolutions (L. Rosa,
CONV2FFT, computer code, edited by M. C. F. Exchange,
2004, available at http://www.mathworks.com/matlabcentral/
fileexchange/loadCategory.do). Simulations were run until
the steady state biomass was reached, typically 2000 days
(determined as the point where the rate of change in
biomass, normalized by the standing biomass, was less than
1 � 10�4). Unless shown otherwise in Table 1, all model
parameters are those used by Rietkerk et al. [2002]. Table 1
shows five different model runs, addressing the 4 key
research questions outlined in the introduction (and elabo-
rated upon next), as well as important tests of model
validity, specifically with respect to identifying bifurcations
in model behavior. The methodological details are below.

3.4. Question 1: Does Small-Scale Disorder in
Vegetation Patterns Arise From Extrinsic Randomness
or Intrinsic Processes?

[17] To address this question, three cases were consid-
ered: a basic diffusion model, the kernel model using a
square wave kernel, and the diffusion model running on a
grid where the soil parameter k2 (the half saturation constant
for the infiltration rate) was treated as an uncorrelated
Gaussian random field varying by 10% around its mean.
Extensive studies into the nature and scaling of soil hetero-
geneity support the notion that variability in soil properties
is uncorrelated on scales of 1–100 m, those relevant to this
model, and thus support the treatment of small-scale ran-
domness as uncorrelated in space [Buchter et al., 1991]. To
remove uncertainty regarding the initial conditions, the
models were initialized with an image taken from remote
sensing and passed through a binary filter. Runs were
initialized by holding the biomass constant in time until
the water terms reached steady state. Biomass was then
allowed to adjust to this new soil moisture spatial distribu-
tion. This approach avoided creating transient artifacts that
might disrupt the initial biomass conditions while the water
terms equilibrated. The model was run with different rainfall
values until an optimal approximation of the original
biomass pattern was reached (tested by the absolute differ-
ence and RMS difference between steady state results and
the initial condition). A water availability measure of R

d
=

4.4 mm was adopted for all simulations. Power spectra of
the steady state solutions were calculated using a two-
dimensional Fourier transform. For clarity, the most
energetic modes, normalized by the area under the
spectrum, were plotted against wavelength.

3.5. Question 2: Can Vegetation Patterns Be Generated
Without Treating Vegetation Transport as Diffusion?
What Are the Influences of the Initial Conditions?

[18] These questions were addressed in concert by run-
ning comparisons of the original diffusion model and the
square wave kernel based model across a gradient of water
stress for different initial conditions and comparing the
results. The initial conditions used consisted first of a
perturbation about continuous biomass cover in the range
of 0–50 g m�2 (‘‘random’’ initial conditions), broadly
analogous to a drying climate fragmenting initially contin-
uous vegetation cover. Other ranges of variability in the
random initial condition were also tested. The second initial

Table 1. Details of Numerical Simulations and the Scientific Questions Addresseda

Research Question Kernel Initial Conditions Parameter Notes

Where does small-scale disorder come
from? (Question 1)

diffusion
and square
wave

binary filter of
remote sensed
image

R
d
= 4.4 mm; diffusion coefficient = 0.01; one
run with k2 parameter randomized = 5 ± 0.5

Can patterns be maintained without
diffusion? (Question 2a)

square wave point and
randomized

death rate (d) = 0.17–0.27 day�1

What is the influence of initial
conditions on pattern formation?
(Question 2b)

square wave point and
randomized

death rate (d) = 0.17–0.27 day�1

Does a dispersion kernel model admit
bifurcations? (Question 3)

square wave point and
randomized

allocation to dispersal (f) = 10�4–0.3 day�1;
death rate (d) = 0.17–0.27 day�1

What is the impact of dispersal length
scales on patterns? (Question 4)

Wald randomized Wald variance s2 = 0.5–32 m; death rate (d) = 0.17–0.27 day�1

aThe parameter values used for all simulations were c = 10, gmax = 0.05, k1 = 5, Dp = 0.1, á = 0.2, k2 = 5, Wo = 0.2, rw = 0.2; Dw = 0.1, Do = 100, R = 1.
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condition used was a random seeding of an otherwise
unvegetated landscape (5% of cells initiated at a biomass
density of 50 g m�2, other cells at 0 g m�2, ‘‘point’’ initial
conditions), broadly analogous to the revegetation of a
desertified region via random germination from a seedbank
or randomly dispersed individual seeds. The initial condi-
tions are shown as the leftmost column in Figure 2.

3.6. Question 3: Does the Kernel-Based Model Admit
Bifurcations?

[19] The possibility of bifurcations existing in the new
model was explored by changing the dispersion allocation
parameter f over the biologically realistic range for varying
values of plant stress.

3.7. Question 4: What Is the Impact of the Dispersion
Length Scale on the Biomass Steady State?

[20] The dependence of the steady state biomass charac-
teristics on the length scale of dispersal was evaluated by
varying the plant stress term and the dispersal length scales
concurrently. Dispersal length scales were varied from 0.5

to 32 m, encompassing scales both smaller and greater than
the typical length scales of vegetation patterns. The char-
acteristics of the biomass were evaluated in terms of the
total standing biomass at steady state (nondimensionalized
by k2) and the site occupancy, expressed as a percentage of
the domain size. A site was defined as occupied if the scaled
biomass density (P/k2) > 1. This threshold was set to exceed
the biomass density within ‘‘bare patches’’ and to encapsu-
late all biomass within ‘‘occupied’’ patches over all simu-
lations. Trends in the characteristic length scales of the
patterns as evaluated from power spectra, and in the
amplitude of the patterning were also recorded.

4. Results and Discussion

[21] From the simulations in Table 1, the results are
presented thematically following the questions outlined
previously. It should be emphasized here that the simulation
results are generic and are not intended to represent a
particular ecosystem.

4.1. Question 1: Does Small-Scale Disorder in
Vegetation Patterns Arise From Extrinsic Randomness
or Intrinsic Processes?

[22] Initiating the model with a vegetation pattern taken
from a remote sensing image allows an evaluation of the
model’s capability to preserve real features of patterned
vegetation, and permits a direct comparison of the fine-scale
features of different model results in terms of two dimen-
sional power spectra. Encouragingly, for appropriate
choices of the rainfall/mortality forcing, the models used
preserved many of the spatial features of the initial condi-
tion. A comparison of the patterns generated by the diffu-
sion model, a diffusion model with random soil properties,
and a dispersion model showed that the dispersion model
best preserved the energetic length scales found in field data
(Figure 3b and 3c). A comparison of the power spectra of
these cases showed good correspondence between the
remotely sensed image and the dispersion model. The
addition of random soil properties through randomization
of the k2 term generated new energetic length scales and
spread the energy out over this range, reducing the distinc-
tiveness of the pattern (Figure 3c), while the diffusion
model alone constrained the range of energetic length scales
(Figure 3d). Preservation of the energetic length scales of
real data is a necessary but not sufficient condition upon
which to evaluate the model’s performance; these results
provide encouraging but not conclusive support for the use
of the kernel-based model.

4.2. Question 2a: Can Patterns Be Maintained in the
Absence of Diffusion?

[23] The model results indicate that pattern formation can
persist without requiring biomass to diffuse. This is an
important confirmation that the proposed mechanisms for
pattern formation, which until now have been demonstrated
only with idealized descriptions of vegetation transport, are
compatible with realistic vegetation movement processes.
The results obtained via a dispersal kernel contrast to those
obtained from previous kernel and diffusion based models
by increasing the steady state biomass density and decreas-
ing the regularity of the steady state biomass patterns.
Despite differences in pattern appearance, the disordered

Figure 3. Comparison of measured and modeled power
spectra, represented here by a scalar wavelength. The spectra
are normalized by their respective areas. (a) The full spectrum
obtained from the remote sensing image (Figure 1a).
(b) Magnification of area indicated by insert in Figure 3a.
(c) The spectrum from the dispersion model for the same
range in wavelengths. (d) The analogous spectrum arising
from the diffusion model runs with stochastic soil properties.
(e) The spectrum from a diffusion model assuming
homogeneous soil/vegetation parameters in space. The
dotted vertical line indicates the most energetic length scale
observed from the Google Earth image.
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patterns generated by the dispersion model recapitulated the
trends with water stress seen in the diffusion model. Linear
stability analysis supported the interpretation that dispersion
destabilized the pattern formation properties of the model,
as the range of unstable wavelengths increased markedly
[Murray, 2002] (see also Appendix A). The outcomes from
using kernels in pattern-forming models depend on the
shape and purpose of the kernel. Lefever and Lejeune
[1997] use a kernel to encode the feedbacks that result in
pattern formation to generate smooth, regular patterns. By
contrast, our kernel purely results in transport of biomass
and has the effect of removing sensitivity of that transport to
biomass gradients, a sensitivity that was maintained in the
Lejeune and Lefever model. The kernel in this model is
independent of biomass gradients. It is thus less diffusive
and admits disordered solutions that diffusion would tend to
smooth out. In fact, some of the patterns generated by the
dispersion model appear less regular than those observed in
nature, raising the possibility that biomass movement might
preserve some diffusive features. A potential source of such
behavior might lie in vegetative reproduction (through
clonal growth), which is known to occur in several of the
species that form patterned vegetation (e.g., Combretum
micranthum, Guiera senegalensis, Pleuraphis (formerly
Hilaria) murtica) [Couteron and Lejeune, 2001]. The prev-
alence of vegetative versus sexual reproduction, however, is
not clear [Thiombiano et al., 2003; R. Uchytil, Pleuraphis
mutica, in Fire Effects Information System, Fire Sciences
Laboratory, Rocky Mountain Research Station, Forest Ser-
vice, U.S. Department of Agriculture, 1988, available at
http://www.fs.fed.us/database/feis/plants/graminoid/plemut/
all.html]. Another possible explanation for the model’s less
regular patterns is that the coupling in time between rainfall
and seed production or dispersal, as is common in arid
ecosystem [Ellner and Shmida, 1981], may act to smooth
patterns by subsuming smaller scales during periods of
vegetation expansion or consuming them during periods
of water stress. These two effects do ‘‘smooth out’’ biomass
fronts.

4.3. Question 2b: What Is the Influence of Initial
Conditions on Pattern Formation?

[24] The dependence on ICs between the diffusion model
and the kernel-based model was quite different. The final
pattern form was largely independent of the ICs in the
diffusion model, but was highly sensitive to ICs in the
dispersion case, shifting from a ‘‘frozen’’ state generated by
point ICs where biomass expanded about the initial points
until the expansion was halted by water depletion at the
boundary of the vegetation patches, as in Figure 2b, to the
‘‘disordered’’ patterns generated from random ICs, as in
Figure 2a. The sensitivity of the final pattern to the degree
of randomness imposed in the random initial condition was
also tested. The patterns displayed less disorder as the
magnitude of the initial disturbance declined, but remained
highly disordered in comparison to a diffusion model (see
auxiliary material for details).1

[25] This dramatic change in spatial organization and
sensitivity to initial conditions in contrast to diffusion-based
models can be understood as a combination of two factors:

the stabilization of sharp biomass fronts, and the importance
of connectivity between vegetation patches in moderating
the plant-water spatial dynamics. While diffusion acts to
erode sharp biomass fronts, these fronts remain stable in the
kernel-based model, and are susceptible to being ‘‘pinned’’
by equally abrupt water limitation at the expanding edge,
preventing the growth and establishment of dispersed seed
ahead of the front. Under such circumstances, isolated
patches expand outward symmetrically until the growth is
halted by water limitation. These patches do not fragment
but remain cohesive within the pinned boundary, generating
the ‘‘frozen state.’’ When the model is initiated with
continuous vegetation cover, the vegetation patterning is
not driven by the expansion and pinning of patches but by
the disintegration of the initial vegetation cover due to the
surface water dynamics. The point initiation case can be
viewed as being driven by the expansion of the biomass,
and the random initial conditions case by the reallocation of
soil moisture, with different results for the ultimate spatial
organization. The unrealistic form of the patterns generated
by the point diffusion case suggests that vegetation patterns
are unlikely to have resulted from colonization of sites by
dispersed seed, and lends support to the possibility that
patterns originate from the fragmentation of homogeneous
vegetation cover under increasing water stress.

4.4. Question 3: Does the Dispersion Kernel Model
Admit Bifurcations?

[26] Bifurcations between disordered patterns, ordered
patterns, and homogeneous vegetation occurred with
changes in f, however these were located at values of f >
1 � 10�2, outside the biologically realistic range of f (1 �
10�4–1 � 10�2day�1). Realistic f values generated disor-
dered patterns or homogeneous biomass (see auxiliary
material for bifurcation diagram). These results provide
confidence that the variations observed in the dispersion
model output were independent of the choice of f.

4.5. Question 4: What Is the Impact of Dispersal
Length Scale on Observed Patterns?

[27] Trends in spatial organization, biomass, occupancy
(P/k2 > 1), pattern amplitude and pattern length scale were
evident with changing dispersion length scales and water
stress. Trends in pattern length scale and amplitude
appeared to be specific to the pattern type. Length scales
of gaps (i.e., bare sites) and spots (i.e., vegetated sites)
declined as the dispersion length increased, while the length
scales of labyrinthine patterns were largely unchanged. The
trends in amplitude reflected the trends in length scale, with
biomass generally increasing as vegetation cover declined.
Overall the magnitude of these changes was on the order of
10–15% while dispersal length changed over 2 orders of
magnitude. Despite the trends, it was difficult to identify
any signal of changing dispersion length in power spectra of
the patterns. This is rather encouraging from the perspective
of inverse modeling, as it suggests that the dispersal length
parameter, which is difficult to estimate a priori, will have
only a minimal influence on the remainder of the pattern
form.
[28] The impact of the trends in total biomass and site

occupancy was evaluated using an index that combined the
total biomass and the degree of site occupancy by multi-
plying the standing biomass (normalized by the maximum

1Auxiliary materials are available in the HTML. doi:10.1029/
2008WR006916.
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standing biomass achieved under the environmental con-
ditions) by the percentage of occupied cells, and normaliz-
ing again by the highest value of this index for each set of
environmental conditions tested. Trends in the index
(Figure 4a), as well as for the amplitude (Figure 4b) and
pattern length scale (Figure 4c), are shown in Figure 4 for
the random initial conditions case. The index decreased with
increased dispersion distance, with the greatest decreases
associated with the highest water stress and approaching
zero as the water stress was reduced.
[29] The use of a simple multiplicative index to capture

the variations in standing biomass and its distribution was
based upon a simplified assumption that plants in general
should seek to maximize both their standing biomass and
their extent. This assumption neglects the subtleties of real
ecological responses and should be treated with caution:
nonetheless the trends found are intriguing and suggest that
there may indeed be a feedback between the pattern
formation in these systems and dispersal strategy selection.
The trends furthermore agree with empirical evidence of a
preponderance of anti telechory and atelechory (localized
dispersal) in desert ecosystems, and suggest that there may
be a link between water availability and seed dispersal
length scales. Within the model framework, the decline in

the index with dispersal length can be attributed to the
increased probability of seeds being dispersed to regions
with an impoverished soil moisture resource as the dispersal
length increases. At short dispersal distances a greater
proportion of seeds germinate in a region of relatively high
water availability near the parent. We note that although we
did not explicitly incorporate the inhibition of seedling
germination over crusted soils into this model, that this
would be a further feedback enhancing plant success when
seed dispersal preferentially routed seeds to vegetated sites.
This might also lead to more regular vegetation patterns (see
above).
[30] This simple description is intriguing, and while

obviously limited by lack of explicit consideration of
genetics, intergenerational competition and other factors
needed to evaluate optimal reproductive strategies for plants,
it indicates that the links between plant dispersal strategies,
organizing features in the environment, and other edaphic
drivers deserves more detailed theoretical treatment.

5. Conclusions

[31] While extensive effort has been invested in under-
standing the nonlinear interactions between plants and water
in pattern-forming vegetation within the last decade or so,

Figure 4. Variations in pattern properties with changing length scales of seed dispersal. (a) Changes in
the combined biomass/occupancy index for random initial conditions. (b) Trends in the amplitude of the
patterns, with the amplitude shown normalized against the s2 = 0.5 case. (c) Changes in the characteristic
length scale (as interpreted from power spectra) of the patterns, with the length scale shown normalized
against the s2 = 0.5 case. Increasing R/d indicates decreasing water stress.
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the role of vegetation transport has been less studied. It
appears, however, that the description of spatial movement
of the plant population has the capacity to significantly alter
the steady state spatial patterns in these systems, through
changing sensitivity to initial conditions and destabilizing
the patterns formed over a wider range of length scales.
Indeed, the increased range of length scales may result in
improved representations of steady state biomass, on the
basis of a comparison with measured spatial power spectra
of vegetation density. These results suggest that spatial
heterogeneity, for example in soil properties, need not be
the source of disorder in vegetation patterns, but that the
decoupling between biomass gradients and dispersion terms
may also act to introduce a broader spectrum of length
scales of variability. To further evaluate this hypothesis,
studies of the dispersal ecology of pattern forming species
are needed, to quantify modes of reproduction (sexual
versus asexual), length scales of dispersal and the relation-
ship between soil moisture availability and seedling success
and survival. In an environment limited by the soil water
resource, such studies may allow the separation of the roles
of biomass movement and water supply as the processes
determining patterns of spatial organization.

6. Further Implications

[32] The apparent interaction of water availability and
dispersal length scales in determining steady state biomass

parameters remains intriguing and warrants further investi-
gation. In particular, it raises the question of whether
environmental controls upon dispersal behavior can be
identified more generally across ecosystem types. Studies
of the interaction between dispersal strategy and environ-
ment at the ecosystem level suggest that factors such as
climate and disturbance play important roles in selecting
dispersal mechanisms [Ellner and Shmida, 1981; Reichman,
1984; Abrams, 1988; Fragoso, 1997; Clauss and Venable,
2000; Fragoso et al., 2003], while broad trends can be
identified between ecosystems. To view such trends through
an ecohydrological lens, the classical Budyko Curve
[Budyko, 1974] provides a tantalizing starting point toward
a conceptual framework (Figure 5). A survey of typical
modes of dispersal across biomes suggests that there is a
predominance of short-range dispersal in arid ecosystems,
longer-range wind- and animal-driven dispersal in grass-
lands and temperate ecosystems, and long-range animal
dispersal (with little wind dispersal) in tropical ecosystems
[Howe and Smallwood, 1982; Chambers and MacMahon,
1994]. The findings in this study suggest that it may be
possible to quantify the linkage between an edaphic forcing
term (such as precipitation) and dispersal optimization in
arid ecosystems. We speculate that, given the control of
hydraulics on plant height, resource availability on canopy
densities, and energy inputs on disturbance, it may be
possible to establish a general framework relating optimal

Figure 5. Trends in dispersal length and strategy broadly vary along the Budyko Curve. The abscissa
value, Budyko’s ‘‘radiative index of dryness’’ represents the ratio of potential evapotranspiration to
precipitation, and as such is a measure of water limitation (Ep/P > 1, i.e., more water can be removed
from the landscape via evapotranspiration than is delivered to it) or energy limitation (Ep/P < 1, i.e., more
water is delivered to the landscape than evapotranspiration can remove). The ordinate value is the ratio of
actual evaporation to precipitation.
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ecosystem dispersion strategies to the processes, patterns, and
organizing principles that drive their physical environments.

Appendix A

[33] Appendix A provides further detail regarding the
model limitations, the shape of the dispersion kernels, and
interpretation of the linear stability analysis and derivation
of the dispersion relation.

A1. Model Limitations: Process and Timescale
Considerations

[34] The model used is a simplified description of the
biology, ecology and hydrology of water-limited ecosys-
tems. Given the essentially ‘‘infinite’’ complexity of a real
system, a critique of such a simple model can be carried on
indefinitely. We confine this critique to the most salient
limitations of the ecohydrological model, which essentially
amount to limitations in the process descriptions adopted,
and the consequences of a deterministic representation of
truly stochastic drivers, particularly rainfall.
[35] The plant physiology is simplified, treating growth

as a function of water availability only (a reasonable but
inexact approximation in arid ecosystems because of the
instantaneous linkages between photosynthesis and water
availability); and all parameters are treated as constant in
space and time, generating results representing mean
responses over long timescales. The hydrology represented
in the model is also primitive, relying upon a representation
of both surface and soil water movement as diffusion. These
representations are not strictly realistic, but given that
infiltration and plant uptake are of interest rather than the
precise routing of the flow to the plant, the simple repre-
sentation is perhaps suitable at the biomass timescale.
[36] The model is continuous in space and time, and

represents deterministic processes dependent upon the mean
environmental conditions. As such it omits temporal vari-
ability, and cannot represent the stochastic nature of many
important processes in arid ecosystem (e.g., rainfall). This
approach, however, captures the trends at long timescales,
and allows an evaluation of their effects in isolation from
transient processes, which given the large separation of
timescales between the surface water transport and the
biomass response is reasonable. Furthermore, adopting a
quasi-steady state approximation and linearizing the equa-
tions, the time averaged biomass response can be predicted
by the time averaged rainfall (see Linearization of the
surface water terms, below).

A2. Linearization of the Surface Water Term

[37] The scale separation between the surface water
response time and the biomass/soil water response time in
the ecohydrological model can be evaluated in the diffusive
framework by the ratio of Do:Dp (1000), and in the
dispersive framework by Do

fs Jð Þ, where s(J) is the standard
deviation of the dispersal kernel. Taking an upper limit of
s(J) = 100, the ratio can then be evaluated as: 100

0:25 or �400.
This large-scale separation suggests that at steady state,
changes in the surface water terms occur so rapidly in
comparison to the biomass and soil moisture terms, as to
allow the surface water to be approximated as stationary
during biomass growth.

[38] The linearized equations are time averaged from the
fast scales of overland flow (minutes) to the slower time-
scales of biomass response (annual), with the aim of
investigating how fluctuations in rainfall about the mean
are propagated into the biomass evolution equation, and
under what conditions it is reasonable to approximate the
temporally variable rainfall by its long-term mean state for
arriving at stationary patterns.
[39] Consider the model equations, reproduced here for

convenience, at steady state. In this case, the rapid response
of the surface water allows the approximation @O

@t = 0 to be
made

@P

@t
¼ c gmax

W

W þ k1
P � d P þ DpDP;

where P is the plant biomass in g m�2;

@W

@t
¼ a O

P þ k2Wo

P þ k2
� gmax

W

W þ k1
P � rwW þ DwDW ;

where W is the soil water depth in mm; and

0 ¼ R� aO
P þ k2Wo

P þ k2
þ DoDO;

where O is the surface water in mm. That is,

O ¼ 1

a
Rþ DoDOð Þ P þ k2

P þ k2Wo

� �
: ðA1aÞ

Hence, at steady state, changes in biomass occur much more
slowly than changes in the surface water budget, and the
multiplier can be considered to be constant, k so that O is
linearly forced by rainfall

O ¼ 1

a
Rþ DoDOð Þk: ðA1bÞ

Substituting (A1) into the steady state W equation allows the
simplification

@W

@t
¼ Rþ DoDOð Þ � gmax

W

W þ k1
P � rwW þ DwDW ; ðA2Þ

suggesting that the response of W to rainfall forcing is also
linear.
[40] This approach removes one of the key nonlinearities

but a further linearization step is necessary to treat the plant
water uptake term W

Wþk1
P. Performing Reynolds decompo-

sition on this term yields

W þW 0

W þW 0 þ k1
P þ P0� �

; ðA3aÞ

where primed quantities are excursions from the temporal
average indicated by an over bar. When the fluctuations in
soil moisture are small by comparison to k1 (a reasonable
assumption as the maximum steady state soil moisture is
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typically on the order of k1), and upon time averaging this
term, we obtain

W

W þ k1
P

� �
	 WP

W þ k1
1þW 0 P0

WP

� �

¼ WP

W þ k1
1þ Rw;p

sw

W

sp

P

� �
; ðA3bÞ

where s is the standard deviation, and Rw,p 2 [0,1] is the
correlation coefficient between rainfall and soil moisture
variability (positive in this case). Hence, a necessary
condition for using only mean annual rainfall in biomass
models is that

Rw;p
sw

W

sp

P
<< 1: ðA4Þ

Given that Rw,p � 1 in arid ecosystems, the condition above
is reasonable if the coefficients of variation in rainfall and
soil moisture do not exceed 30% each.

A3. Linear Stability Analysis and the Dispersion
Relation

[41] The analysis follows the methods used by
HilleRisLambers et al. [2001] and is not reproduced in full
here. The pertinent steps may be summarized as (1) non-
dimensionalize the model equations; (2) recognize that
the timescales of surface water transport are 103 times
greater than biomass or soil water response, thus at long
timescales a pseudosteady state approximation can be
applied (i.e., @O

@t = 0); (3) determine the steady state
solution(s) and apply a periodic perturbation; (4) by the
pseudosteady state approximation, the growth in the pertur-
bation of the surface water can also be taken as zero; and
(5) use this approach to contract the system of three
equations to two ODES describing the growth of the
perturbations in the soil and biomass terms.

[42] We evaluate the results for the particular case where
R = 1 and d = 0.23. We do not reproduce the derivation of
the results for the diffusive case, except to note that under
these conditions, wave numbers of less than 31.6 are stable.
[43] Before proceeding further, two points must be noted:

this procedure does not allow us to define the dispersion
relation and so while it determines conditions for pattern
formation, it does not identify the most rapidly growing
modes; second most of the pattern formation that is impor-
tant in this model arises because of nonlinear instabilities,
and these results should be treated as indicative only of the
impact of replacing a diffusive term with a dispersion term.
In this analysis, we examine the case of the bare soil steady
state. Performing a similar analysis at the vegetated state
fails to reveal significant differences between the dispersion
and diffusion approaches, again suggesting that the nonlin-
ear instabilities are principally responsible for the changes
in pattern behavior.
[44] In one dimension, perturbations in the biomass and

soil water terms are given by

e x; tð Þ ¼ e tð Þ cos qxð Þ; y x; tð Þ ¼ y tð Þ cos qxð Þ; ðA5Þ

respectively. Here q represents the wave number of the
perturbations. Linearizing around the steady states by taking
P = P + e(t) and W = W + y(t) and using the pseudosteady
state approximation, an expression for the growth of the
perturbations is obtained

@e
@t

¼ fFT qð Þe tð Þ þ P

W þ 1ð Þ2
y tð Þ;

@y tð Þ
@t

¼ P

W þ 1ð Þ2
� P þWo

P þ 1
�

�O 1�Wo

Pþ1

� �
� PþWo

Pþ1
� q2

� �
0
@

1
Ae tð Þ

þ � kP

W þ 1ð Þ2
þ r

 !
� Dwq

2

 !
y tð Þ: ðA6Þ

Figure A1. Plot of the (a) trace and (b) determinant of the Jacobian matrix describing the growth of
perturbations about the bare soil steady state. By comparison to a constant value of the trace and a single
sign change in the determinant with positive wave numbers obtained for the diffusion situation, the use of
the dispersion equation introduces a sign change into the description of the trace and ‘‘spreads’’ the
instability over a wide range of wave numbers because of the fluctuations in the determinant.
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Here FT(q) represents the one-dimensional Fourier trans-
form of the dispersion kernel. For the case where the kernel
can be approximated by a square wave, the Fourier
transform is

FT qð Þ ¼ ie�i c1þc2ð Þq �eic1q þ eic2q � ei 2c1þc2ð Þq þ ei c1þ2c2ð Þq
� �

� H c1 � c2½ 
2q c1 � c2j j

; ðA7Þ

where c1 and c2 can be taken as dx
2
and 3dx

2
, or 1 and 3 for the

case modeled in this paper (do= 2), and where H represents
the Heaviside function.
[45] The Jacobian for this system of equations can be

found

J ¼

�fFT qð Þ P

Wþ1ð Þ2

�bk þ O
1�Woð Þ
1þ P

þ O
1�Woð Þ
1þ Pð Þ2

P þWoð Þ

q2 þ P þWo

1þ P

� � Dwq
2 � r � kP

1þWð Þ2

2
66664

3
77775:

Conditions for the stability of the steady states in terms of
the wave number q can be determined on the basis of the
typical conditions for stability

Tr Jð Þ < 0;Det Jð Þ > 0; ðA9Þ

where

Tr Jð Þ ¼ �fFT qð Þ þ Dwq
2 � r � kP

1þWð Þ2
;

Det Jð Þ ¼ � �8FT qð Þð Þ Dwq
2 � r � kP

1þWð Þ2

 !
�

� �bk þ O
1�Woð Þ
1þ P

þ O
1�Woð Þ
1þ Pð Þ2

P þWoð Þ
q2 þ PþWo

1þP

� �
0
@

1
A

� P

W þ 1ð Þ2

 !
: ðA10Þ

[46] Taking the no biomass steady state and the param-
eters used in this paper, we obtain

Tr Jð Þ ¼ �0:4þ q2

2500
� 2:5� 10�3FT qð Þ;

Det Jð Þ ¼ 0:01� 2:5� 10�3FT qð Þ �0:42þ q2

2500

� �
:

ðA11Þ

[47] Figure A1 shows that all wave numbers greater than
31.6 are again unstable, now because of the sign change in
Tr(J), while additional wave numbers are introduced be-
cause of the oscillations of Det(J). This broadening of the
range of linearly unstable wave numbers is indicative of a
general destabilization of the model to spatially variable
perturbations.
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