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a b s t r a c t

The Janzen–Connell (JC) effect, which hypothesizes that recruitment and growth of seedlings is positively
correlated to the distance from the parent tree, is shown to generate highly organized vegetation biomass
spatial patterns when coupled to a revised Fisher–Kolmogorov (FK) equation. Spatial organization arises
through a novel mechanism of non-local activation and local inhibition. Over a single generation, the
revised FK model calculations predict a ‘‘hen and chicks’’ dynamic pattern with mature trees surrounded
by new seedlings growing at characteristic spatial distances in agreement with field data. Over longer
timescales, the importance of stochastic dynamics, such as those associated with randomly occurring
light gaps, increase thereby causing a substantial deviation between predictions from the deterministic
FK model and its stochastic counterpart derived to account for such random disturbances. At still longer
timescales, however, statistical measures of the spatial organization, specifically the spatial density of
mature trees and their minimum spacing, converge between these two model representations.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Fisher–Kolmogorov (FK) equation is a basis for much of
the field of mathematical biology, describing the growth of a
population that also moves in space [31]. A number of recent
theoretical studies have examined the potential for the FK equation
to generate spatial patterning when non-local competition terms
are included [1–4]. These studies suggested that non-local factors
are important drivers of population dynamics, particularly spatial
patterning of bacterial colonies. A macroscopic complement to
these studies is found in the non-local activation of tree seedling
recruitment, as is postulated to occur due to the ‘‘Janzen-Connell’’
(JC) effect [5]. The JC hypothesis proposes that predation of
dispersed seed and young seedlings of rainforest species is
negatively correlated to the distance of dispersal of the seed from
the parent tree. An ‘expansive’ interpretation of the JC effect is
adopted here including distance dependence arising from plant
pathogens, predators,mechanical damage induced by animals, and
other mortality factors that are strongly localized near the parent
tree. This expansive JC effect is thought to be important in the

∗ Corresponding address: Nicholas School for the Environment, Duke University,
Box 90328 Duke University, 27708 Durham, NC, United States. Tel.: +1 919 724
9808.
E-mail addresses: set8@duke.edu (S. Thompson), gaby@duke.edu (G. Katul),

manu@duke.edu (J. Terborgh), palvarez@eden.rutgers.edu (P. Alvarez-Loayza).

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2009.03.004
maintenance of rainforest biodiversity, and is hypothesized to have
the following consequences:

• For seeds to survive, theymust be dispersed sufficiently far from
the parent tree to ‘‘escape’’ the localized area where mortality
factors are elevated;
• Seedlings primarily establish beyond someminimum threshold
distance from the parent tree, resulting in a spatial pattern of a
mature tree(s) surrounded by seedlings at a distance (referred
to as a ‘‘hen and chicks’’ pattern) in the short term.

The expansive view of the JC hypothesis and its effects on
spatial organization of tropical forests remains a topic of active
research in the ecological literature [6–12]. Numerical studies have
examined the implications of the JC effect on species richness and
establishment [13,14], but the potential for the FK equation (or
its variants) to generate spatial patterns when subjected to the
JC constraints remains largely unexplored, and is the subject of
this study. Field data suggest that spatial organization varies with
the timescale considered. Between generations, a parent tree may
be found surrounded by seedlings at some characteristic distance
(the ‘‘hen and chicks’’ arrangement). At longer, intergenerational,
timescales trees may be situated apparently at random across
the landscape (the ‘‘random cohorts’’ arrangement). Many sources
of stochasticity lead to random cohort arrangements, but the
formation of light gaps is likely to have particular importance.
Light gaps greatly accelerate growth and determine sites where
seedlings can mature. Motivated by field observations and
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theoretical developments in pattern formation via the FK equation,
three inter-related research questions frame the study objectives:

1. What are the dynamics predicted when the JC effects are
imposed on an FK model? Can bifurcations with ecological
relevance be identified? How can spatially organized states be
characterized?

2. How do the transient phases for such a model compare to
a generational record of field data documenting tree and
seedling locations? If stochasticity (e.g. light gap generation)
is incorporated into the model, are the underlying dynamics
preserved?

3. What is the implication of the spatial organization on upscaling
biomass growth subject to JC effects?

This study addresses these questions using model results
guided by field data collected at the Cocha Cashu Biological Station
in the Manu National Park (CC), and at the Los Amigos Biological
Station (LA), both located withinMadre de Dios, Peru. Descriptions
of the CC and LA field sites, their climate, and their vegetation
can be found elsewhere [15–18]. The field data collected at these
two sites consist of fruiting tree locations, seed rain, seed and
seedling mortality and seedling locations. Data from one plot,
which documents locations of the fruiting trees and their seedlings
over a 33-year period (from 1974 to 2007), are used in initializing
the model calculations. Ecological parameters collected for Iriartea
deltoidea, one of the most dominant tree species in wet lowland
and premontane tropical forests of western Amazonia [19,20] and
the Choc- and Central American region [21,22] are employed in
the model calculations. This choice of case study provides a robust
application of the model, since the very abundance of I. deltoidea
suggests that JC effects are likely to be less pronounced than in the
case of other, less abundant species. Like many rain forest palm
species, I. deltoidea is animal dispersed, shade-tolerant, and can be
found in all size classes within the sub-canopy or in gaps [23–25].
Trees were recorded as being reproductive only if they were
observed to bear fruit, or if evidence of past fruiting was observed.

2. The model

2.1. The Fisher Kolmorogov equation

The FK equation couples logistic growth of total biomass density
(P, kg m−2) to diffusive movement via:

∂P
∂t
= r

(
1−

P
K

)
P + D∇2P (1)

where r is an intrinsic growth rate (yr−1), K is the carrying
capacity expressed in terms of biomass density (kg m−2), t is time
(yr), D is a diffusion coefficient (m2 yr−1), ∇2PT is the Laplacian(
∂2P/∂x2 + ∂2P/∂y2

)
, and x and y are planar Cartesian coordinates

(m).

2.2. The modified Fisher–Kolmogorov (FK) equation

To account for JC effects on biomass organization in space
and time requires three modifications to the original FK equation.
Firstly diffusive biomass movement is replaced by a non-local
dispersion term to ensure that the dispersing seeds can ‘‘escape’’
the zone of elevated mortality and to account for non-local seed
dispersal. This is achieved by replacing the Laplacian term in
the FK equation with a convolution between a dispersal kernel
and the reproductive biomass. The kernel prescribes a probability
distribution of the location of dispersed seed about a reproducing
tree. At every timestep, a proportion α(yr−1) of the reproductive
biomass (designated Pr ) is converted to seed and dispersed
according to this kernel.
Secondly, a spatially varying mortality term is added, in the

form of a kernel convolved with Pr , which accounts for both the JC
effect and spatial competition betweenmature trees. A continuous
equation describing the evolution of the total biomass P is then
given by:

∂P
∂t
= r

(
1−

P
K

)
P − αPr −mdP

+α

{∫ y

0

∫ x

0
Pr
(
x′, y′

)
Wd

(
x′, y′

)
dx′dy′

}
(2)

where Wd is the dimensionless dispersal kernel (defined below),
m is the maximum mortality rate (yr−1), x′ and y′(m) are dummy
space variables and d is the dimensionless and spatially variable
intensity of mortality. d is set to a maximum of unity through the
normalization:

d =

∫ y
0

∫ x
0 Pr

(
x′, y′

)
Wm

(
x′, y′

)
dx′dy′

max
(∫ y
0

∫ x
0 Pr (x

′, y′)Wm (x′, y′) dx′dy′
) (3)

whereWm is the dimensionless mortality kernel defined below.
Thirdly, the model must be able to discriminate between re-

productive biomass Pr and non-reproductive biomass (designated
Pj) generated by seed dispersal. Typically tropical species reach a
reproductive age after several decades (for instance the species
considered here, I. deltoidea, reaches maturity after approximately
20 yr [25]). In this model, a simplifying assumption is made that
the reproductive condition of the biomass at a site can be inter-
preted as a minimum ‘‘biomass for reproduction’’, so that biomass
is defined as reproductive if it exceeds a threshold Sp. A decline in
biomass below Sp results in the biomass being classified as non-
reproductive. Thus the continuous equation for P may be split into
reproductive and non-reproductive components such that P =
Pr + Pj, with separate evolution equations written for Pr and Pj:

∂Pr
∂t
= Pr

(
r
(
1−

Pr
K

)
− α −md

)
+ PjH1

(
P − Sp

)
− PrH1 (Sp− P) (4)

∂Pj
∂t
= r

(
1−

Pj
K

)
Pj + α

∫ y

0

∫ x

0
Pr
(
x′, y′

)
Wd

(
x′, y′

)
dx′dy′

− mdPj − PjH1
(
P − Sp

)
+ PrH1

(
Sp − P

)
(5)

H1(...) represents the Heaviside unit step function defined such
thatH1(0) = 1with dimensions of t−1. It controls the classification
of biomass at a site as either reproductive or juvenile, preventing a
nonsensical co-location ofmultiple trees at a site. The construction
used has assumed equivalent competitive relationships between
two mature trees as between a mature tree and immature plants.
This is adopted as a simplifying assumption, commonly employed
in other theoretical treatments of the JC effect [26], and could
be refined as an extension of the current model. Hereafter, the
system of Eqs. (2)–(5) is referred to as the JC modified FK equation,
or JC–FK. Note that spatial processes operate on both the growth
(due to seed dispersal) and mortality (due to JC effects) of the
Pj equation, but only spatial mortality (due to competition) is
included in the Pr equation.

2.3. The kernels

The recruitment pattern displayed by a species is a function of
both its dispersal behavior and the spatial dynamics of the agents
causing mortality, and JC recruitment has been shown to result
when mortality agents are most active at short spatial scales but
seed dispersal is long-range [6]. The case study addressed here, I.
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Fig. 1. Sample seedling survival data for I. deltoidea, computed as the difference
in normalized probabilities (∆) of seedling dispersal and mortality (due to a
number of factors). The line shows the difference between computedmortality and
dispersal kernels (assumed to be Gaussian). The zero crossing in consistent with
the order of magnitude of the crown diameter and represents the point where
seedling recruitment is no longer inhibited by the presence of the mature tree.
Photographs show the typical condition of a mature palm, seedlings undergoing
high mortality [32], and healthy seedlings that have escaped JC effects [29].

deltoidea, exhibits such behavior, with most mortality associated
with insect attack over small spatial scales [32]; whilemedian seed
dispersal distances are in the order of 100 m [27]. Although the
choice of dispersal and mortality kernels for this study are based
phenomenologically on measurements of I. deltoidea conducted
at CC and LA, the results obtained are generalizable to species
exhibiting JC effects [6]. The 9 plots from CC and LA were pooled
to derive the survival data shown in Fig. 1 for I. deltoidea. This
kernel was computed as the difference in probabilities of seedling
(not seed) dispersal and mortality. While seed dispersal kernels
are not used here, we note that previous studies demonstrate that
the dispersal kernels are ‘heavy-tailed’ and fit similarly well (to
within 3.5%) by exponential, Gaussian or the so-called 2Dt kernel
shapes [28]. For the seedling data presented in Fig. 1, the critical
feature of the dispersal is not the shape of the dispersal kernel
itself (we approximate it as Gaussian) but the observation that
seed survival is negative within a threshold distance. To model the
dispersal of the surviving seeds only, the positive component of the
survival kernel is approximated with a gamma distribution shifted
a distance R (m) from the parent tree. That is,

Wd (rd) =
rk−2d

2π
e
−(rd−R)

θ

θ k0(k)
. (6)

Here θ > 0 is a scale parameter, k > 0 is a shape parameter,
0(k) is the Gamma function of k and rd indicates radial distance
from the parent tree (m). The mean of the distribution µd is given
by kθ and the variance σd by kθ2. For the model calculations, k
was set to 2 and θ was treated as a single ‘control’ parameter
determining the width of the kernel. The mortality kernel was
approximated as a 2D Gaussian distribution with zero mean. The
mortality at the center (rd = 0) is set to zero so that trees do not
exert mortality effects on themselves. The area of influence of the
elevatedmortality can be directly altered by changing the variance
of the kernel, σm.

2.4. Addition of a stochastic component

The influence of light gaps was incorporated into the model
by varying growth rate r . Undisturbed sites had r = 0.01 yr−1
corresponding to low light environments. Based on light gap
frequency analyses at CC 2% of the landscape was randomly
disturbed each year. Total biomass (P) in these cells was reduced
to zero, and the growth rate increased 100-fold to account for
increased light availability. If biomass in the cell had not reached
0.001 K after three years, the growth rate reverted to the low
light environment value. Similarly, when biomass in a gap reached
maturity the growth rate reverted to the low light environment
value. The selection of these disturbance fractions and growth rates
are not intended to reproduce a particular field experiment or a
study site, but to represent known features of the ecosystems so as
to derive general conclusions.

2.5. Limitations of the model

The overriding goal in developing this model was to capture
the spatial complexity of JC processes via a simple amendment to
the FK equation, minimizing the number of parameters needed to
define the model behavior. These simplifications inevitably result
in somemodel limitations. These are primarily associated with the
treatment of mature biomass that suffers mortality and declines,
and with competitive interactions. The JC–FK model assumes that
reproductive biomass that declines to less than Sp should be
treated as immature biomass. It is appropriate to assume that
such biomass does not reproduce or exert JC effects, but it would
be more ecologically reasonable for such biomass to contribute
to a ‘‘non-reproductive mature biomass pool’’ which does not
experience JC effects or reproduce. In the current formulation
the JC effects are assumed to act equivalently for mature-mature
interactions and mature–immature interactions. This avoids the
necessity of introducing a nonreproductive biomass pool at the
expense of forcing mature and immature biomass to conform to
the same spatial relationships. Future version of the model could
be extended to address these issues.

3. Steady states of the model

This section derives the homogeneous steady states of the
JC–FK model and presents their stability to spatial perturbations
as determined from numerical simulations.

3.1. Nondimensionalization

The model is nondimensionalized by scaling all biomass terms
with the carrying capacity K : P∗ = P/K , P∗r = Pr/K , S

∗
p = Sp/K ; all

temporal termswith themortalitym: t∗ = tm, a = r/m, b = α/m,
c = H1(...)/m; and all spatial terms with σm: x∗ = x/σm,y∗ =
y/σm. The spatial kernels are also rescaled by σm, and referred to as
d∗,W ∗d andW

∗
m. The resulting nondimensional equations (in which

the ∗ has been dropped for clarity) are given by:

∂Pr
∂t
= a (1− Pr) Pr − bPr − dPr + PJc

(
P − Sp

)
− Prc

(
Sp − P

)
(7)

∂Pj
∂t
= a

(
1− Pj

)
Pj + b

∫ y

0

∫ x

0
Pr
(
x′, y′

)
Wd

(
x′, y′

)
dx′dy′

− dPj − Pjc
(
P − Sp

)
+ Prc

(
Sp − P

)
. (8)

All further discussion will refer to the nondimensionalized values
of Pr , Pj, P and Sp.

3.2. Analysis of the equations

Spatially homogeneous steady states
[
P◦j , P

◦
r

]
may be identified

by noting that all spatial kernels integrate to 1 under homogeneous
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Table 1
Details of the simulations performed, the parameter values (and their variation), and the ICs.

Trial Question Parameters Values Output parameters Initial conditions

1. Nonlinear dynamics of JC model
a = r/m 0.5, 0.75,1,1.5

2,4,5,10 Steady state biomass distribution Random points (mature biomass)
perturbation about 0.8 Krd/σm 4,2,1,0.5,0.1

σd/σm 0.1,0.25,0.5,1,2

2. Qualitative comparison with field data

r 0.32 yr− 1

Biomass distribution c.f. 33 yr of field
sampling

Measured locations of mature
trees

m 0.5 yr− 1
rd 4 m
σm 3 m
σd 15 m

3. Couple to stochastic light gaps

r 0.01− 1 yr− 1

Biomass distribution at 20, 100 and 700 yr.
Total biomass evolution Random points (mature biomass)

m 1 yr− 1
rd 10 m
σm 10 m
σd 10 m
Fig. 2. Bifurcation diagramandphase plane for the steady states of the FK-JCmodel.
(A) shows the bifurcation in stability of the states as determined by the condition
of Pr . (B) shows a phase plane for a situation where a stable steady state exists but
is precluded from forming because it lies below the threshold for maturity.

conditions. There are then two possibilities to consider, the
first being that the homogeneous steady state does not include
reproductive biomass. In this situation, all terms referring to
Pr (including the spatial mortality d) drop out of the evolution
equation for Pj. Provided that P◦j < Sp, there is no conversion of
immature biomass to mature biomass and the evolution equation
for Pj collapses to the logistic equation. The twowell-known steady
states of this equation are P◦j = 0, K , where the zero steady state
is unstable. However it is necessary that Sp < K . Hence the second
possibility is the steady state P◦r > 0 and Pj 6= K . Under these
conditions P− Sp > 0, allowing the simplification of the equations
to:

0 = a
(
1− P◦r

)
P◦r − bP

◦

r − P
◦

r + P
◦

j c(> 0) (9)

0 = a
(
1− P◦j

)
P◦j + bP

◦

r − P
◦

j − P
◦

j c(> 0). (10)

Solving these functions simultaneously yields

P◦r =
P◦j
(
a
(
P◦j − 1

)
+ 1+ c(> 0)

)
b

(11)

while P◦j is defined by the solution of:

0 =
1
b

(
P◦j
(
b2
(
1+ a(P◦j + 1)

)
− b (a− 1)

(
1+ c + a(P◦j − 1)

)
+ a

(
1+ c + a

(
P◦j − 1

))2 P◦j )) . (12)

Although analytical solutions of Eq. (12) for
(
P◦r , P

◦

j

)
exist they are

not readily rendered in closed form. Instead the general solution
behavior was elucidated by fixing b and c(> 0) = 1 and
treating a as a control parameter. A plot of the resulting bifurcation
diagram in terms of Pr and a is shown in Fig. 2. Three states
occur in this plot. (A) the unstable no-biomass solution; (B) a
stable solution which exists provided a >≈ 2 but where P◦r <
Sp; (C) the same stable solution curve where now P◦r > Sp.
Regime A is unstable to any perturbation, while regime C is stable
to all perturbations. Regime B merits further discussion. In this
regime the system stabilizes at P = Sp. If P > Sp the mature
biomass attempts to evolve to the steady state, but in doing so
loses biomass and becomes non-reproductive. If P < Sp then
the system attempts to evolve to K and in doing so gains mass
and again crosses Sp. The ecological interpretation of this state
is that the minimum biomass needed for reproduction generates
such large competitive effects that the system cannot reach the
homogeneous steady state. This state is stable to homogeneous
perturbations, but unstable to spatially variable perturbations. The
first bifurcation of the system is observed at the point where P◦r =
Sp. As the control parameter a(=r/m) is tuned beyond this point
the patterned solution continuously increases in amplitude and
wavelength.

4. Methods

Details of the model runs are presented in Table 1 along
with the research question targeted by each simulation. Steady
homogeneous states of the JC–FK model were identified and
the stability to random spatial perturbations tested numerically.
States were explored as temporal and spatial control parameters
were varied. For all simulations, α was set to 4 × 10−4 yr−1,
and simulations were all run for 500 yr. Transient behavior was
examined over a shorter ‘‘generational’’ timescale of 33 yr using
initial conditions drawn from the location of mature trees on one
of the plots at CC. The results were compared to the locations of
saplings and seedlings recorded in the field, to assess the ‘‘realism’’
of model performance in a qualitative sense. The deterministic
JC–FK model was also coupled to the stochastic appearance of
light gaps over various timescales. Numerical calculations were
performed using an Euler forward difference schemewith a spatial
discretization of 5 m(dx = dy), and a time-step of 0.004 yr. For
the JC–FK equations, all convolutions between the biomass and
spatial kernels were performed in the Fourier domain using a fast
Fourier transform algorithm [33]. Initial conditions (ICs) included
point conditions (a random initialization of 1% of the domain with
mature trees) and random perturbations about a homogeneous
biomass density at Sp (set to 0.8 K).
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Fig. 3. As a = r/m is increased from 0.5 (panel A) through 0.75 (B), 1(C), 1.5 (D) to 2 (E), the spacing betweenmature trees becomes denser, and the overall biomass increases
(bottom–right panel). Isolated ‘‘spots’’ of high biomass represent reproductive trees, while larger patches of lower biomass represent areas of recruiting juveniles. With
increasing a, the ratio of immature to mature biomass increases, and the biomass dynamics resembles logistic growth behavior. The biomass density shown is normalized
by the carrying capacity of the entire (250 m× 250 m) domain.
Fig. 4. Comparison between model calculations of normalized biomass (color-
map) and field data (red circles). The model calculations are initialized with the
fruiting trees (here identified by green circles) measured since 1974, and seedlings
are predicted after a 33-year simulation showing current seedling recruitment
at Cocha Cashu Biological Station. Approximately 75% of the seedlings identified
in the field are located in areas where the model predicted immature biomass
would exceed 1% of carrying capacity. The remaining seedlings are either located
at long distances from the fruiting trees and are likely to have been introduced
to the site by long distance dispersal, or are located in close proximity to the
parent tree, suggesting that the JC effect was not completely effective in preventing
establishment. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5. Results and discussion

5.1. Determinants of spatial organization

The spatially organized steady state is structured around an
irregular lattice of mature trees. Immature biomass is suppressed
around these trees and increases with distance frommature trees.
The spacing ofmature trees is controlled by aminimum separation
distance proportional to σm and a, perturbed randomly by the ICs
and the dispersal parameters. Systematic variation of the dispersal
behavior for fixed mortality and ICs did not change the structure
of the steady state (as measured by the minimum separation
distance between mature trees). The intensity of the signal of
spatial organization was set by a, with the weakest intensity
near the bifurcation, and increasing as a declined (Fig. 3). The
model results partially support the JC hypothesis prediction that
mature trees should become regularly spaced at long timescales.
Regular spacing was not precisely produced. The spatial density
of trees remained well below that predicted by a circle packing
analysis, generally between 18 and 50% of the maximum possible
density

(√
3π
6

)
for the domains used. The lack of regularity

indicates multiple degrees of freedom in the model system and
is the source of the apparently arbitrary relationship between
the spatial organization and the ICs and dispersion terms. The
minimal sensitivity to the dispersion parameters results from the
use of continuous distributions to represent the biomass dispersal.
Provided the tails of the mortality kernel decay faster than those
of the dispersal kernel, ‘‘escape’’ as predicted in the JC Hypothesis
always occurs. The use of continuous dispersal kernels accords
well with field observations [11,25], which suggest that for animal
dispersed species (such as I. deltoidea) some proportion of seed is
usually conveyed substantial distances from the parent tree and
escape almost always occurs.

5.2. Comparison with field data and timescales

The deterministic model was run over a 33-year period using
initial conditions from a 33 year experiment conducted at the CC
research station for I. deltoidea. The results were compared to field
data indicating the position of adult trees and seedlings at the
end of this 33-year period. Approximately 75% of the seedlings
recorded in the field were located in sites that themodel predicted
would be occupied by biomass (Fig. 4). The seedling locations
that were not well explained by the deterministic model arose
through one of two mechanisms: they either fell too close to
the parent tree, indicating that the JC effect had not prevented
establishment at those sites, or they were located remotely from
fruiting trees and presumably either occurred due to seed dispersal
from trees outside the boundary of the surveyed area or were
the result of animal dispersal from distant plants, an effect that
this model did not directly parameterize. At intergenerational
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Fig. 5. Evolution of the probability density function (pdf) of separation distances between mature trees as a function of time. Solid bars represent the pdf for the stochastic
light gapmodel and the red lines the pdf for the continuousmodel. Initially (10-20 yr) the influence of initial conditions dominates. After approximately 100 yr the continuous
model reaches a steady state which is quite different from that of the light gap model which is dominated by stochastic effects for ≈400 yr. Eventually, after ≈500 yr the
effects of the JC in structuring the locations of mature trees become the dominant signal in the pdf. The model condition is illustrated after 10,100 and 700 yr in panels A–C.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
timescales, the predicted ‘‘hen and chicks’’ pattern was a good
description of themajority of biomassmovement. Similarly, over a
generational timescale, the predictions of the deterministic model
provided a good indication of where biomass would establish in
the stochastic light gap model (Fig. 5). Adding stochasticity to
the model, however, retarded biomass migration through space.
The dynamics effectively remained ‘‘frozen’’ by the stochasticity in
conditions approximating point ICs. Over intermediate timescales,
this resulted in a pronounced divergence between the stochastic
and deterministic models largely associated with the discrepancy
in the time taken for the plant population to disperse throughout
the spatial domain. After 100 yr, the stochastic model predicted
the existence of only 45% of the number of mature trees predicted
by the deterministic model at a steady state, and the difference
between the empirical probability density functions (pdfs) of the
pair-wise spacing between mature trees were significant at the 1%
confidence level (p = 0.0045) as determined by the Kolmogorov
Smirnov (KS) test. Over longer timescales (400 yr and greater),
the distribution of mature biomass in the stochastic model
qualitatively resembled that of the steady state deterministic
model. Equivalentminimum separation distances (≈1.82σm) were
observed in each case, the number of mature trees agreed to
within 10%, and the differences between the pdfs of mature
tree distributions were not significant (p = 0.62) via the KS
test. The results suggest that in the presence of ‘exogenous’
stochasticity (such as gap formation), the minimum separation
distance between fruiting trees remains an appropriate measure
of the impact of the JC effect.

5.3. Ecological implications

The evolution of the total biomass in the domain was tracked
for allmodel realizations. Near the bifurcation, the biomass growth
closely approximated the sigmoidal curve typical of logistic growth
(Fig. 3). Once this state became unstable, however, the impact of
spatial organizationwas to reduce the total biomass at steady state
and to introduce additional peaks into its time evolution. The time
evolution of the biomass depended upon the ICs and dispersion
parameters. The stochastic model generated lower steady state
biomass values than the corresponding deterministic model.
Large-scale models of biomass evolution must use averaging
techniques, such as an assumption of lumped logistic growth, to
scale up over localized spatial dynamics. Caution is needed when
upscaling over non-linear dynamics such as those predicted by
the JC effect, because the lumped biomass evolution does not
always conform to simple predictions such as logistic growth. Near
the bifurcation (a ≈ 4.5 for Sp = 0.8), the deviation from
logistic growth as predicted by the FK equation is minimal, but
as the degree of spatial organization increases, and particularly
when stochasticity is added there are large departures from
logistic growth. The JC effect depresses the steady state biomass,
introduces multiple temporal peaks and, in the stochastic case,
random fluctuations. As an alternative to simple logistic upscaling,
approaches incorporating the role of the mature trees as the
determinants of spatial organization should be considered. Under
such a framework, estimates of likely spacing between mature
trees could be obtained from measurements of mortality kernels,
combined with the packing density predictions (in the range of 18
to 50% of dense circular packing) and estimates of the immature
and mature biomass associated with a mature fruiting tree as
a means of upscaling over these spatially variable parameters.
Mature tree separation distances in this model are strongly
determined by σm, so that ultimately the spatial density of mature
trees for a given species is also a function of σm. In ecological
terms, expansion of the zone of elevated mortality results in
a declining abundance of mature trees, a finding supported by
data at CC suggesting that adult abundance scales inversely with
the typical distance between recruiting seedlings and the nearest
adult tree [30]. If σm has a role in controlling abundance at the
single species level it may also impact diversity and coexistence
of multiple species, particularly as multiple species tend to exhibit
varying length scales of seedling mortality. The implications of
multiple species exhibitingmultiple spatial controlsmerits further
theoretical examination.
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6. Conclusions and future work

This work was motivated by three questions relating to the
dynamics, timescales and upscaling considerations engendered
when incorporating JC effects into models of forest biomass,
which we have been able to address to at least a preliminary
level of detail using the simple JC–FK equation. JC effects alter
the steady states of the FK equation by generating a regime in
which the minimum biomass required for reproduction exerts a
high degree of competitive pressure, a state unstable to spatial
perturbations. The forest has a stable, spatially organized state
where mature trees are situated at a minimum distance from
each other and determine the concentration of immature biomass
in their vicinity. This supports the prediction that a defined
length scale exists governing the distribution of mature trees
and confirms the concept that seeds must ‘‘escape’’ the zone
of higher mortality if the species is to propagate in space. The
model findings suggest that the JC parameters, particularly σm,
help to determine species abundance by governing the density
of reproductive trees. The implications of these findings deserve
further investigation, particularly in considering the interaction
of multiple species. The transient phases of the model compared
well to field data and supported the hypothesis of local inhibition
and non-local activation over short timescales. The model did
not account for long distance dispersal, and through adopting
continuous representations of seed dispersal and mortality, was
unable to reproduce the findings of a small number of seedlings
surviving close to the canopy of mature trees. Finally this work
found significant upscaling implications relating to the spatial
distribution of reproductive individuals. Where JC effects strongly
impact the distribution of a species, estimates of carrying capacity
based on resource availability may well over-estimate steady-
state biomass. σm is identified as a strong determinant of the
spatial distribution of areas of high biomass, and thus abundance
and spatially upscaled biomass density. Extensions of the current
model to differentiate competitive processes between mature and
immature biomass, and to address the effects of mortality on
mature biomass, can be made relatively simply and may help to
account for the presence of fruiting trees within close proximity
of each other in the field. Further characterization of the spacing
of mature trees over sufficiently large areas in tropical rainforests
is needed to critically evaluate model results relating to spatial
organization in rainforests. Advances in remote sensing and theuse
of novel species specific indicators (such as synchronous flowering,
which can be readily observed in aerial photography) are starting
to provide appropriate datasets to enable more rigorous tests of
the predictions of the JC–FK and other spatially explicit biomass
models.
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