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Abstract In seasonally dry climates, a distinct rainy season is followed by a pronounced dry season dur-
ing which rainfall often makes a negligible contribution to soil moisture. Using stochastic analytical models
of soil moisture to represent the effects of this seasonal change has been hindered by the need to mathe-
matically represent the stochastic influence of wet season climate on dry season soil water dynamics. This
study presents a simple process-based stochastic model for soil moisture dynamics, which explicitly models
interseasonal transient dynamics while accounting for carry over soil moisture storage between the wet and
dry seasons, and allows a derivation of an analytical expression for the dry season mean first passage time
below a soil moisture threshold. Such crossing times pose controls on both vegetation productivity and
water stress during dry summers. The new model, along with an existing model that incorporates nonzero
dry season rainfall but not variability in the soil moisture condition at the start of the dry season, are tested
against data from the Tonzi Ranch Ameriflux site. Both models predict first passage times well for high soil
moisture thresholds, but the new model improves prediction at lower thresholds. The annual soil moisture
probability distribution function (PDF) from the new model also compares well with observations.

1. Introduction

Seasonally dry ecosystems (SDEs), which include Mediterranean, tropical monsoonal, and tropical savannah
climates, cover approximately 30% of the Earth’s land area [Peel et al., 2007] and contain several biodiversity
hot spots [Miles et al., 2006; Klausmeyer and Shaw, 2009]. Pronounced climatic variability is a common fea-
ture of these regions [Fatichi et al., 2012] and is projected to intensify in future climate scenarios [Gao and
Giorgi, 2008; Garc�ıa-Ruiz et al., 2011; Dominguez et al., 2012]. Consequently, a number of studies classify
SDEs and their water resources as climatically vulnerable [Nohara et al., 2006; Parry, 2007; Gao and Giorgi,
2008; Klausmeyer and Shaw, 2009; Garc�ıa-Ruiz et al., 2011]. Projecting the variability of water availability and
the risks of water shortfalls in these regions could therefore provide useful insights into vegetation and eco-
system risk [Vico et al., 2015; M€uller et al., 2014].

Process-based stochastic methods provide a minimal modeling framework to obtain the probability distri-
butions of soil moisture and streamflow [Milly, 1993; Rodr�ıguez-Iturbe et al., 1999; Laio et al., 2002; Botter
et al., 2007]. Since hydroclimatic variation strongly impacts plants through soil moisture [Taiz and Zeiger,
2010; Thompson and Katul, 2012], these models have also been used to predict ecological response and to
assess the vulnerability of ecosystems [Porporato et al., 2004; Viola et al., 2008; Thompson et al., 2013 2014].
To date, the majority of methods have been developed under conditions where either the climatic forcing
can be considered stationary in time [Rodr�ıguez-Iturbe et al., 1999; Porporato et al., 2004; Botter et al., 2007]
or where transient dynamics between seasons are not considered [Miller et al., 2007; Kumagai et al., 2009].
Studies that considered the effects on soil moisture of seasonality in rainfall or evaporative demand, or tran-
sient dynamics between seasons, have typically focused on the mean soil moisture dynamics [D’Odorico
et al., 2000; Laio et al., 2001; Feng et al., 2012; Feng et al., 2015].

Viola et al. [2008] first investigated the impacts of transient soil moisture dynamics on plant water stress dur-
ing the growing season in Mediterranean ecosystems. In that study, the steady state PDF of soil moisture
during the wet season represents the end of wet season conditions, after which the dry season proceeds
following a step change in rainfall statistics and potential evapotranspiration. For a site with shallow soil or
a small mean rainfall depth (relative to the total possible amount of soil water storage), this approach is
appropriate because the variance of wet season conditions will be small. However, to accurately quantify
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soil moisture variability at sites with large average rainfall depths or soil storage, a more precise description
of the conditions at the start of the dry season may be required.

This work developed a simplified but fully analytic stochastic theory for soil moisture probability distribution
functions for seasonally dry regions. The model yields a single, analytical expression for the annually inte-
grated soil moisture PDF under seasonal climates, and a similarly minimal analytical expression for the
mean first passage time of dry season soil moisture below a given threshold. Such probabilistic descriptions
of first passage times are used to link soil moisture dynamics to plant water stress [Rodr�ıguez-Iturbe et al.,
2001; Viola et al., 2008].

The model of Porporato et al. [2004] was used to represent the probabilistic dynamics of soil moisture dur-
ing the wet season. In this framework, the wet season is characterized by stationary hydroclimatic and rain-
fall properties. At the onset of the dry season, the soil moisture initial condition is a random variable,
described by the soil moisture PDF following the final storm of the wet season, which is an improved rep-
resentation of conditions at the beginning of the dry season, compared to the steady state wet season
PDF. The dry season has zero rainfall and a deterministic soil moisture dry down, which proceeds uninter-
rupted until the following wet season. Consequently, the approach assumes rainfall seasonality is perfectly
binary; i.e., a wet season, characterized by statistically stationary rainfall, is followed by a dry season with
no significant rainfall at all. This is most appropriate in locations where a pronounced wet season is fol-
lowed by a dry season during which rainfall is negligible (or where rainfall inputs are so low that the major-
ity of rainfall is intercepted and does not contribute to soil moisture variations over the rooting depth of
local vegetation) [Savenije, 2004]. If dry season rainfall is negligible, the time-integrated dry season soil
moisture PDF can be computed, making it possible to analytically compute the full, annual soil moisture
PDF for seasonally dry regions. We note that one of the advantages of the approach here is that it facili-
tates other stochastic derivations of ecological relevance, for instance, the dry season soil moisture cross-
ing properties.

The model is analogous to the streamflow model of M€uller et al. [2014], where an existing stochastic
streamflow model [Botter et al., 2007] was modified by assuming that the dry season streamflow is a
function of the water storage in the catchment at the end of the wet season (a stochastic variable),
followed by a deterministic, seasonal recession. Here rather than assuming a deterministic form of
streamflow recession during the dry season, we prescribe a deterministic loss rate of water to evapo-
transpiration, allowing stochasticity to arise in the soil water storage at the end of the last wet season
storm.

We tested the model at a seasonally dry site monitored within the AmeriFlux network. AmeriFlux sites
record micrometeorological and soil moisture data at high temporal resolutions, making them good candi-
dates for comparisons to theory [Miller et al., 2007]. We first compare the empirical annual soil moisture PDF
to the modeled annual soil moisture PDF. The annual time scale PDF provides a parsimonious model test: it
encodes all the features of a seasonal model, and allows all available soil moisture data to be brought to
bear on model testing. Following this, the model’s prediction of the dry season mean first passage time
below a soil moisture threshold is compared with a previously developed expression for this crossing time
[Viola et al., 2008] and with data. The model developed by Viola et al. [2008] provides an interesting contrast
in simplifying assumptions: the current model accounts for end of wet season variability and not dry season
rainfall, and the model of Viola et al. [2008] incorporates dry season rainfall but neglects variability in the
dry season soil moisture initial condition.

2. Methods

2.1. Symbols Used
Throughout this section, C �ð Þ refers to the gamma function, C �; �ð Þ to the generalized incomplete gamma
function, and d �ð Þ to the Dirac delta function [Abramowitz and Stegun, 1964]. The probability density func-
tion is represented by p and the cumulative density function (CDF) by P. Subscripts, in upper case, denote
the random variable being described by the PDF or CDF, and the corresponding lower case characters
denote the observed value of the random variable. For example, the PDF and the CDF of the soil moisture S
at value s are denoted as pSðsÞ and PSðsÞ, respectively.
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2.2. Seasonally Dry Stochastic Soil Moisture: Wet Season Soil Moisture and the Dry Season Initial
Condition
The mass balance for water with constant density within a one-dimensional control volume spanning the
active rooting zone depth, Zr [L], is given by:

nZr
ds
dt

5RðtÞ2ET½sðtÞ�2LQ½sðtÞ; t�; (1)

where n is the porosity, LQ [L T21] is the flux of soil moisture leaving the control volume as runoff or deep
drainage, and ET [L T21] is the flux of soil moisture lost due to evapotranspiration. Following Porporato et al.
[2004], this model simplifies the dependence of evapotranspiration and drainage dynamics on soil water
content by assuming that any water storage in excess of field capacity (s1) is instantly drained. While evapo-
transpiration is assumed to occur at a prescribed maximum rate ETmax at s1, this rate of loss declines linearly
until it goes to zero evapotranspiration at the wilting point (sw):

ETðsÞ5
0 : s 2 ð0; swÞ

ETmax �
s2sw

s12sw
: s 2 ½sw; s1�

:

8<
: (2)

Rainfall, R(t), is modeled on daily time scales as a Poisson process with exponentially distributed depths,
making equation (1) a stochastic differential equation.

Under stationary climate conditions, assumed to prevail during the wet season in a seasonally dry climate,
the steady state PDF of the nondimensional, wet-season, relative soil moisture Xw (scaled to assume a value
of zero at the wilting point and a value of one at field capacity, x5 s2sw

s12sw
Þ can be obtained [Porporato et al.,

2004]:

pXw ðxwÞ5
N
g

xk=g21
w e2cxw for xw 2 ½0; 1�; (3)

The model is characterized by the two nondimensional parameters:

c5
w0

a
and

k
g

5
kw0

ETmax
; (4)

where w0½L�5ðs12swÞnZr is the total available water storage, k [T21] is the reciprocal of the mean waiting
time between rainfall events, a [L] is the mean depth of the rainfall events, ETmax [L T21] is the maximum
rate of evapotranspiration from the soil, and N is a normalization constant. Due to seasonal changes in tem-
perature, insolation and relative humidity, ETmax, is likely to vary between the wet and dry seasons, leading
also to different values of g. We therefore use gw to describe the wet season dynamics and gd to describe
the dry season dynamics.

Moisture dynamics during the dry season are assumed to consist of a deterministic dry down due to
ongoing evapotranspiration from the soil. The dry season soil moisture initial condition, X0, is treated as
a stochastic variable generated by the last significant storm of the wet season. This soil moisture state at
the onset of the dry season is the sum of the soil moisture condition that prevailed before the final wet
season storm and the soil moisture increment introduced by this storm (this biases X0 toward a more
saturated state than prevails during the wet season as a whole). To determine the distribution of this
initial condition, we first nondimensionalize the depth of each incoming rainfall event (R) by the
transformation:

R05
R

nZr
; (5)

and then perform the rescaling:

H5
R0

s12sw
5

R
w0
; (6)

which ensures that the new increment, H, has the same nondimensional scale as Xw. Based on the assump-
tion that rainfall depths are exponentially distributed, the CDF and PDF of H are given by:
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PHðhÞ512e2ch and pHðhÞ5ce2ch: (7)

Since the Poisson rainfall process is memoryless, the soil moisture conditions prior to the final wet season
storm are described simply by the steady state wet season soil moisture PDF, pXw . The dry season soil mois-
ture initial condition (X0) is the sum of the wet season soil moisture (Xw) and the rainfall depth (H) random
variables:

X05Xw1H; (8)

assuming Xw1H < 1. There is a finite probability that the final rainfall increment of the wet season will lead
to saturated soil conditions, so the initial condition distribution also contains an atom of probability at
X051. For a final rainfall increment that causes X0 < 1, the PDF of X0 conditioned on X0 < 1 is:

pX0jX0<1ðx0Þ5
ðx0

0
pXw ðxÞpHðx02xÞdx5

Nc
k

e2cx0 x0
k

gw for x0 2 ð0; 1Þ: (9)

The atom of probability at X051 is given by:

PrðX051Þ5
ð1

0
pXw ðxÞ 12PHð12xÞð Þdx5

N
k

e2c; (10)

where 12PHð12xÞ is the probability that the final rainfall increment is greater than 12x, leading to satu-
rated conditions at the end of the wet season. The PDF for the soil moisture conditions at the start of the
dry season is:

pX0ðx0Þ5
Nc
k

e2cx0 x0
k

gw 1
N
k

e2c � d x021ð Þ for x0 2 ð0; 1�: (11)

2.3. Dry Season Soil Moisture PDF
In addition to previous studies, which derive the probabilistic dynamics of dry season soil moisture at the
daily (Xt

d) time scale, we derive the PDF for dry season soil moisture at the annual (Xd) time scale. Xt
d and Xd

represent slightly different ways to quantify soil moisture values. The former is a soil moisture PDF that
changes as a function of the number of days (t) from the start of the dry season. On the first day (t 5 0), Xt

d

is necessarily distributed as X0. In previous studies [Viola et al., 2008], Xt
d also varies depending on the likeli-

hood of rainfall occurring. In this study, assuming no significant dry season rainfall, evapotranspirative proc-
esses deplete soil water stores as the dry season progresses, biasing Xt

d toward more dry conditions. In
contrast, the time-independent dry season soil moisture distribution, Xd, represents the time-integrated
probability distribution of soil moisture over the course of the dry season. It is therefore independent of
time. This distribution combines all dry season soil moisture data into a single, lumped distribution, encap-
sulating variability from the antecedent wet season and from the temporal evolution of the daily dry season
soil moisture.
2.3.1. The Distribution of Xt

d

In the absence of dry season rainfall, the dry season soil moisture dynamics given by the soil water balance
(equation (1)) are described by a deterministic, exponential dry down:

xt
d5x0e2gd t ) x05xt

d egd t; (12)

where gd is the dry season equivalent of gw. Equation (12) specifies a unique dry season soil moisture value
for a given initial condition (x0) and a given number of days into the dry season (t). This implies that the
time-dependent, dry season soil moisture is a derived random variable Xt

d

� �
of the dry season initial

condition:

pXt
d

xt
d

� �
5pX0 x0 xt

d

� �� � dx0

dxt
d

5egd t � Nc
k

exp 2cxt
d egd t

� �
xt

d egd t
� �k=gw 1

N
k

e2cd xt
d2e2gd t

� �� �
for xt

d 2 0; e2gd tð �:
(13)

The time-dependent moments of Xt
d can be obtained from its moment generating function M(c) [Ross,

2009], which is defined as:
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MðcÞ5E½exp ðc � x0e2gd tÞ�5 N
k

e2c � exp c � e2gd tð Þ1
ð1

0
pX0ðx0Þ � exp ðc � x0e2gd tÞdx0

5

N c c2ce2gd tð Þ2
gw 1k

gw C
gw1k

gw

� �
2C

gw1k
gw

; c2e2gd t c

� �� �
1ece2gd t 2c

� �
k

:

(14)

For example, the mean of Xt
d is then calculated from M(c) as:

hXt
di5

dM
dc

���
c50

5

Nðgw1kÞc2
gw 1k

gw C
gw1k

gw

� �
2C

gw1k
gw

; c

� �� �
gwk

� e2gd t5hX0ie2gd t;
(15)

which is exactly the form of the exponential dry down with x05hX0i. This approach could be extended to
calculate higher-order moments of Xt

d , such as its variance, or to incorporate temporal variability in the cli-
mate parameters. For example, gd5gdðtÞ can be substituted into equation (14) without affecting the analyti-
cal tractability of the moment calculations.
2.3.2. The Distribution of Xd

For simplicity, we assume that the duration of the dry season (td) is constant from year to year. Provided
that the available soil storage does not grossly exceed the mean soil moisture increment and that the wet
season duration is long compared to the average rainfall interarrival time, the duration of the transient wet-
up period at the start of the wet season can be assumed insignificant compared to the duration of the
entire wet season, and the distribution of soil moisture during the wet season will be independent of the
wet season length (note that both of these conditions would likely be violated in very arid regions, meaning
that these models are inappropriate for representing soil moisture dynamics in true deserts). If the assump-
tion of independence is valid, then the annual soil moisture PDF can be calculated as a weighted sum of
the dry season and wet season soil moisture PDFs:

pXðxÞ5 12
td

365

� �
pXw ðxÞ1

td

365
pXd ðxÞ: (16)

To calculate the time-integrated dry season PDF, we first note that the CDF of the dry season soil moisture
(Xd) conditioned on the value of X0 is:

PXd jX0
ðxd; x0Þ5PfXd � xdjX05x0g

5

0 : xd 2 ð0; x0e2gd td Þ

ln
x0

xd

� �
gd td

: xd 2 ½x0e2gd td ; x0Þ

1 : xd 2 ½x0; 1Þ:

8>>>>>>>><
>>>>>>>>:

(17)

The logic behind the second line of (17) is the (admittedly obvious) observation that time itself is uniformly dis-
tributed over the course of the dry season; that is, each day from the dry season has an equal probability of
being selected in a random sample of days from the dry season. This implies that the CDF of time over the dry
season is a simple linear function: PT ðtÞ5t=td : t 2 ½0; td�. Since, for a given initial condition, the dry season soil
moisture is only a function of time, the distribution of the integrated dry season soil moisture random variable is
a derived distribution of the uniform distribution of time. The expression xd5x0e2gd t therefore can be solved for
t and then substituted into PT ðtÞ5t=td to obtain the CDF of Xd (with an appropriate transformation of the
domain) which is the time-integrated form of Xt

d . The time-integrated dry season PDF of Xd given X0 5 x0 is then:

pXd jX0
ðxd; x0Þ5

dPXd jX05x0

dxd

5
1

td xd gd
for x0e2gd td � xd � x0:

(18)

The unconditional, time-integrated dry season PDF can be found from the conditional distribution of equa-
tion (18) by integrating over the distribution of X0:
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pXd ðxdÞ5
ð

X0

pXd jX0
ðxd; x0Þ pX0ðx0Þdx0

5

ðxd egd td

xd

pXd jX0
ðxd; x0ÞpX0ðx0Þdx0 : xd 2 ð0; e2gd td Þ

ð1

xd

pXd jX0
ðxd; x0ÞpX0ðx0Þdx0 : xd 2 ½e2gd td ; 1�

8>>>>>>>><
>>>>>>>>:

5

Nc2 k
gw C

gw1k
gw

; xdc

� �
2C

gw1k
gw

; xdcetdgd

� �� �
td gd k xd

: xd 2 ð0; e2gd td Þ

Nc2 k
gw C

gw1k
gw

; xdc

� �
2C

gw1k
gw

; c

� �� �
tdgdkxd

1
Ne2c

k td xd gd
: xd 2 ½e2gd td ; 1�:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(19)

There are two distinct domains for the distribution pXd : (1) xd 2 ð0; e2gd td Þ, and (2) xd 2 ½e2gd td ; 1Þ. The only
way for the dry season soil moisture to take on a value in the first domain (that is, the only source of proba-
bility density in that domain) comes from a dry season soil moisture initial condition that is greater than the
value of xd itself (hence the lower bound), but less than the initial condition value which leads to a dry sea-
son soil moisture value of xd on the very last day of the dry season (hence the upper bound at xd egd td ). In
the second domain, however, there exist values for x0 that are greater than 1 (which is outside the domain
of pX0 ) which could lead to a dry season soil moisture value xd 2 ½e2gd td ; 1�. Therefore, the upper bound on
x0 should be fixed to 1 in this domain, while the lower bound remains the same.

The annual soil moisture PDF is then calculated as the weighted sum of the dry season and wet season soil
moisture PDFs, according to equation (16).

2.4. Dry Season Mean First Passage Time
As a simplified measure of dry season plant water stress in regions where the growing season and the dry
season coincide, Rodr�ıguez-Iturbe et al. [2001] and Viola et al. [2008] consider the mean fraction of the dry
season that soil moisture is less than some threshold (s�), below which plants become water stressed:

Plant water stress / td2�T s�

td
: (20)

Here �T s� is the mean time from the start of the growing (dry) season to reach the water stress threshold s�.
Using a number of simplifying assumptions, Viola et al. [2008] derive the following approximate expression
for �T s� :

�T s�5
min s12s�ð ÞnZr ; tw awkw2ETmax;w

� �
2 s�2swð ÞnZr

	 

ETmax;d2adkd

; (21)

where aw ; kw are wet season rainfall statistics (mean depth and frequency), tw is the duration of the wet sea-
son, ad; kd are dry season rainfall statistics, and ETmax;w; ETmax;d are the wet and dry season maximum rates
of evapotranspiration. This expression assumes that the soil moisture conditions at the beginning of the
growing season are well approximated by the mean wet season soil moisture conditions and that the
threshold crossing time is a linear function of this initial condition.

The model derived by Viola et al. [2008] accounts for stochasticity in Ts� that results from dry season rainfall
processes. The theory presented here yields an analogous expression for Ts� that instead accounts for vari-
ability in the dry season initial soil moisture condition. First, we use equation (12) to obtain an expression
for Tx� (where x� is the normalized equivalent of the relative soil moisture threshold, x�5 s�2sw

s12sw
Þ as a function

of the dry season initial condition:
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x�5x0e2gd Tx� ) Tx� ðx0Þ5
ln x0

x�

gd
: (22)

Making the simplifying assumption that the dry season initial condition is greater than the soil moisture
stress threshold with high probability Prob½X0 > x�� � Prob½X0 < x��ð Þ, the mean of Tx� is easily obtained
by integrating over the PDF for X0:

Tx�5

ð1

x�
pX0 x0ð ÞTx� ðx0Þx0

5
N

gdk

( c g2
w x�

gw 1k
gw A

k
gw

11;
k
gw

11;
k
gw

12;
k
gw

12; 2x�c

� �
ðgw1kÞ2

2

c g2
w A

k
gw

11;
k
gw

11;
k
gw

12;
k
gw

12; 2c

� �
ðgw1kÞ2

1

ln x� c E 2
k
gw
; c

� �
2c2 k

gw C
gw1k

gw

� �
2e2c

� �)
;

(23)

where E n; zð Þ is the exponential integral function EnðzÞ5
ð1

1

e2zt

tn
dt and A is a version of the generalized

hypergeometric function [Abramowitz and Stegun, 1964]:

A a1; a2; b1; b2; zð Þ5
X1
n50

ða1Þnða2Þn
ðb1Þnðb2Þn

zn

n!
; with

ðaÞ051 and ðaÞn5aða11Þða12Þ. . .ða1n21Þ; n � 1

(24)

2.5. Case Study
2.5.1. Site
A case study from the AmeriFlux station at Tonzi Ranch is presented to empirically test the annual soil mois-
ture distribution and mean first crossing time models. Tonzi Ranch is an oak savanna woodland located in
the foothills of the Sierra Nevada near Ione, California. The climate is Mediterranean, characterized by wet,
cool winters and hot, dry summers [Ma et al., 2007; Baldocchi et al., 2010]. Twelve years of soil moisture data
(2001–2013), collected at depths of 5, 20, and 50 cm using Theta Probe model ML2-X impedance sensors
(Delta-T Devices) [Miller et al., 2007], are analyzed for this study.
2.5.2. Model Parameterization
The eight model parameters (td; ETmax; a; k; sw; s1; Zr ; n) were computed from the AmeriFlux data sets. One
of the challenges in applying our model is that the assumption of binary rainfall seasonality is an approxi-
mation at best, and the model user must make decisions about how to pragmatically separate the wet and
dry periods. Numerous rubrics could feasibly be used to differentiate these seasons, leading to variable
results. Here we present results based on two distinct partitioning rubrics, to explore the sensitivity of the
results to reasonable choices.

For Rubric 1, we simply examine the spring months from March through the end of May and choose the
latest well-defined (change in sign of the first derivative) soil moisture peak that is greater than a thresh-
old, chosen here to be x 5 0.6. For Rubric 2, we first extract each well-defined soil moisture peak during
the spring period as potential start days for the dry season. We then calculate the mean of all the soil
moisture local minima from 1 January to each potential dry season starting peak. The chosen peak is
the final peak of the wet season greater than the mean of the preceding soil moisture minima. This
ensures that the selection of the initial condition is strongly correlated with wet season conditions. In
both cases, the end of the dry season is chosen as the minimum soil moisture value between the start
of the dry season and the start of the next calendar year. Figure 1 presents a plot of the seasonally parti-
tioned soil moisture time series corresponding to each rubric. The dry season length (td) is calculated by
subtracting the median wet season length from 365. Each extracted dry season is used to calculate the
first passage time below soil moisture thresholds ranging from 1% to 50% of the soil moisture wilting
point.

We estimated ETmax using the Priestly-Taylor equation:
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ETmax51:26
e0s

e0x1g
� �

L
Rn2Gð Þ; (25)

where g is the psychrometric constant, L is the latent heat of vaporization of water, G the ground heat flux,
Rn the net radiation, and e0s is the derivative of the saturation vapor pressure (calculated using the Clausius-
Clapeyron equation) with respect to temperature. The value of ETmax was computed separately for each sea-
son based on the seasonal daily mean value of ETmax. The mean rainfall depth and mean waiting time
between rainfall events (for wet and dry seasons), a and k, were derived by aggregating 30 min AmeriFlux
rain gauge data to the daily time scale. Due to the fact that the duration of Pacific coastal storm systems is
typically longer than 1 day, we treated multiday storm events as single events. Similarly to previous sensitiv-
ity analyses using stochastic streamflow models [M€uller et al., 2014], however, we find that this deviation
from the exact specification of rainfall as a Poisson process does not significantly degrade model
performance.

The soil depth (Zr) and porosity (n) were obtained from the Ameriflux biological data. Although soil textural
data are available for the site, using a pedotransfer function [e.g., Saxton and Rawls, 2006] to estimate the
model parameters is problematic for the Porporato et al. [2004] model, since the simplifications made to the
drainage and evaporation processes mean that s1 and sw in the model do not map precisely to conventional
definitions of field capacity and wilting point. We therefore calibrate these parameters, recognizing that
these values primarily affect the validity of the wet season PDF (i.e., the underlying Porporato et al. [2004]
model).

Bulk volumetric soil water content is calculated by
zonally averaging the soil moisture measurements
over the depth of the soil column. For this type of
averaging, each depth is assigned the soil moisture
value of the nearest measured value, then the stand-
ard integrated average of the resulting profile is
computed. Table 1 summarizes model parameters.
2.5.3. Model Evaluation
To evaluate the performance of our model, we
used the Nash-Sutcliffe efficiency (NSE) applied to
the soil moisture quantiles:

Figure 1. Relative soil moisture time series data from Tonzi Ranch. Extracted dry seasons are denoted with shaded rectangles. The top row
uses seasonality partitioning Rubric 1, and the bottom row uses Rubric 2.

Table 1. Tonzi Ranch—Site Characteristics Calculated From
AmeriFlux Data

Parameter Rubric 1 Rubric 2

td (days) 202 212
ETmax wet season (dry season) (mm/d) 2.01 (5.54) 1.88 (5.50)
a wet season (dry season) (mm) 24.45 (5.52) 24.63 (6.67)
k wet season (dry season) (day21) 0.14 (0.04) 0.14 (0.04)
sw 0.26 0.26
s1 0.82 0.82
Zr (mm) 600 600
n 0.45 0.45
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where q̂i and qi are the empirical and theoretical relative soil moisture values associated with quantile i of
the annual soil moisture PDF. The NSE has been used extensively for the assessment of hydrologic models
[Nash and Sutcliffe, 1970; Castellarin et al., 2004; M€uller et al., 2014].

3. Results and Discussion

The case study shown in Figure 2 supports the applicability of the model for capturing the annual PDF of
soil moisture in seasonally dry regions. Although the domain of the analytical PDF is supported on
x 2 ½0; 1�, the raw data take on values outside of this range. Figure 2 therefore shows the raw empirical his-
togram and a truncated histogram, the latter computed by setting all soil moisture values above field
capacity (x 5 1) to field capacity and all values below the wilting point (x 5 0) to the wilting point. The two
seasonal partitioning rubrics (Figures 2a and 2b) yield similar results at the Tonzi Ranch site. Using Rubric 1
and untruncated soil moisture data, the model NSE is 0.85, indicating that even the simple bounded model
yields a good fit to field measurements. For the truncated quantiles, the NSE for the analytical model is 0.86.
Using Rubric 2, the model NSE is 0.89 against the untruncated soil moisture data and 0.90 against the trun-
cated soil moisture data.

The computed mean first passage times for each partitioning rubric are plotted in Figure 3. There is strong
agreement between the mean first passage time for the current model using both rubrics, suggesting that
dry season rainfall plays an insignificant role at Tonzi Ranch in determining the time for soil moisture to
drop below the presented range of soil moisture thresholds. We also found that even for the lowest thresh-
old, set to 1% of the soil moisture wilting point, all dry seasons were long enough for soil moisture levels to
drop below the threshold. This implies that variability in the dry season length at this site is not an issue
when considering first passage times, as truncation (due to the beginning of the next wet season) of the
seasonal dry down (above ecological stress thresholds, for instance) is unlikely. The model of Viola et al.
[2008] works well for higher soil moisture thresholds, but underestimates the mean crossing time for lower
thresholds. These differences likely arise from the fact that, in order to obtain an approximate analytical
expression for �T s� , Viola et al. [2008] both linearize the dry season soil moisture dynamics and use a simpli-
fied expression for the soil moisture conditions at the start of the dry season. Consequently, the new model,
which includes a more accurate description of the dry season initial conditions and does not linearize the

Figure 2. Integrated annual soil moisture PDFs compared to AmeriFlux soil moisture data, partitioned using (a) Rubric 1 and (b) Rubric 2.
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functional form of the soil moisture dry down, outperforms the model presented by Viola et al. [2008]. We
suspect, however, that at sites with more significant dry season rainfall contributions, the model of Viola
et al. [2008] would become increasingly more appropriate.

Clearly the model presented here could be further elaborated, for example, through use of a more complete
soil moisture model, such as Laio et al. [2002]. More realistic loss functions can be incorporated into the soil
moisture model without significantly altering the logic of the approaches illustrated here. However, the use
of a more complex loss function leads to considerably more complex algebra to manage the conditionality
associated with multipart piecewise functions, variable initial conditions, and a finite dry season length.
Here we elected to base the analysis on the simpler Porporato et al. [2004] model to ensure that the logic of
the approach was not obscured.

The model also makes the seemingly inconsistent assumption that the dry season can have a variable start
date, but that season lengths are fixed. To resolve this, the stochastic model should not be treated as a one-
to-one mapping of the soil moisture time series into a probabilistic domain, but rather as a model devel-
oped in the probabilistic domain. The parameterization represents the deliberate decision to capture the
important source of variation imposed by conditions at the end of the wet season, while retaining analytical
tractability. The model then assumes that this form of variability is more important than creating a perfect
mapping between the time series and probability domains.

Other sources of stochasticity, such as the dry season maximum evapotranspiration rates, could also be
incorporated. Interannual variations in ETmax, however, are subordinate to interannual variations in rainfall
when driving hydrological processes [see, for example, Milly and Dunne, 2002], while variability in the length
of the dry season could only be expected to influence the soil moisture PDF when the time scales of dry
down approach the mean dry season length. Thus, the level of complexity used here sufficiently captures
key stochastic drivers of soil moisture dynamics in seasonally dry systems.

4. Conclusion

This work presents an analytical model to compute the PDF of a bounded random variable, soil moisture,
in climates with two distinct seasons. The formulation is used to derive a simple analytical expression for
the dry season mean time to reach a threshold of water stress s�. The presented model and an existing
model are tested and compared using soil moisture data from the Tonzi Ranch Ameriflux site. The case
study demonstrates that the current model performs well, despite simplifications in the underlying evap-
otranspiration and drainage dynamics, and may be particularly valuable in regions such as California char-
acterized by pronounced seasonality in rainfall, and large fluctuations around mean wet season soil
moisture.
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Figure 3. Mean time from the beginning of the dry season to reach a range of soil moisture thresholds (x�) using Ameriflux data (blue
dashed line), the current model (solid line), and the model developed by Viola et al. [2008] (finely dashed line).
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