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Abstract

Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and

over time, which are reflected in spatial patterns of species distributions. As these species distributions respond

to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic

suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the impor-

tance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a

major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species

persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic

microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to

climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate

mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic

microenvironments will act as species-specific refugia only if the nature and space/time variability in water

availability are compatible with the ecological requirements of a target species. We illustrate this argument

with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic

refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require

improved understanding of climate change effects on key hydrologic processes, including frequently cryptic

processes such as groundwater flow.
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Introduction

Shifts in species distributions in response to the current

era of rapid climate change (IPCC 2014) pose tremen-

dous challenges for conservation planning, prioritiza-

tion, and land protection decisions (Hampe & Petit,

2005; Ackerly et al., 2010; Anderson & Ferree, 2010).

Predicting species distributional shifts is therefore a

central focus of climate change ecology (Moritz &

Agudo, 2013; Woodin et al., 2013; Valladares et al.,

2014). Correlative species distribution models, widely

used tools for making these predictions (Heller & Zava-

leta, 2009), typically project poleward and upward ele-

vational distribution shifts (e.g., Moritz et al., 2008;

Bergamini et al., 2009; Felde et al., 2012; Scheffers et al.,

2016), in which species track their thermal envelope as

temperatures increase. Observed distributional

responses, however, display great heterogeneity in lati-

tudinal and elevational shifts across plant and animal

taxa in response to 20th century climate change (Lenoir

et al., 2010; Rapacciuolo et al., 2014; Lenoir & Svenning,

2015; Wolf et al., 2016). These observations suggest that

species are not moving in response to regional tempera-

ture drivers alone.

The climatic conditions experienced by individual

organisms or ecological communities typically arise

from a cascade of climatic processes operating on dif-

ferent scales – the regional or mesoclimate, operating

on scales of ~104–106 m, is modified by topography and

elevation to form a topoclimate that varies on scales of

~102–103 m and is further mediated by small-scale envi-

ronmental factors and vegetation cover, influencing the

microclimate on scales of 101–102 m (Geiger et al.,

2003). Including topoclimatic effects, such as cold air

pooling, impacts the predictions of climate change

models (Ashcroft et al., 2012; Flint & Flint, 2012; Potter

et al., 2013; Hannah et al., 2014). Consequently, incorpo-

rating the impacts of a changing regional climate on

microclimates might be expected to improve predic-

tions of species distributional responses, especially at
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fine spatial scales, compared with predictions that rely

on regional climatic changes alone (Dobrowski, 2011;

Klausmeyer et al., 2011; Hannah et al., 2015; Keppel &

Wardell-Johnson, 2015). In particular, climatic ‘mi-

crorefugia’ – locations on the landscape that support

populations of a species while the surrounding climatic

conditions become unsuitable for that species (Rull,

2009) – may provide opportunities for species persis-

tence in the face of regionally deteriorating conditions.

Relict populations not only contribute to regional biodi-

versity, but also harbor the potential to serve as climate

nuclei (sensu Ferreira & de Melo, 2016; V€aliranta et al.,

2011) from which the species expand/disperse follow-

ing a return to a more favorable regional climate

(Grandcolas et al., 2014; Grandcolas & Trewick, 2016).

Paleoecological studies show evidence of such climati-

cally distinct microsites enabling species persistence

during previous periods of climate change (Tzedakis

et al., 2002; Rull, 2009, 2010; Stewart et al., 2010). In the

context of contemporary climate change, such sites rep-

resent priority targets for conservation, yet their identi-

fication remains a challenging, poorly resolved, and

interdisciplinary problem (Keppel et al., 2012; Corlett &

Westcott, 2013; Hannah et al., 2015; Hylander et al.,

2015), but see (B�atori et al., 2014).

Topographic locations that provide relief from tem-

perature increases have been identified (Shoo et al.,

2010; Ashcroft & Gollan, 2013; Gollan et al., 2014).

Whether these sites will provide microrefugia

requires consideration of how the microclimate inter-

acts with species’ physiological constraints, demogra-

phy, dispersal, and community interactions. The

recent focus on temperature in topographic and cli-

matic microrefugia insufficiently accounts for the sig-

nificance of changing water availability as a major

stressor that is likely to be imposed by climate

change, particularly in regions where contemporary

ecosystems are water-limited (IPCC, 2014). The role

of local hydrology in creating hydrologic microrefu-

gia merits further exploration, particularly given

observations of species distributional shifts that

appear to be governed by water availability rather

than temperature trends (Lenoir et al., 2010; Crim-

mins et al., 2011; VanDerWal et al., 2013).

For a site to form a hydrologic refugium, water avail-

ability at that site must be elevated compared with

regional or local levels, creating a mesic microenviron-

ment. Biotic communities in xeric ecosystems exploit

such mesic microenvironments worldwide, dramati-

cally illustrating the potential for these sites to support

locally unique species assemblages in spite of extraordi-

narily dry regional climates. Figure 1 shows three

desert environments with locally elevated water avail-

ability supported by distinct hydrologic processes. In

each case, despite a dry regional climate, processes that

supplement or concentrate water availability into these

microenvironments support communities of relatively

mesophytic plants (species with lower tolerance of

water deficits, as determined by morphology, leaf stom-

atal responses, xylem vulnerability, or phenological

strategies) than would be anticipated given regional cli-

mate.

The persistence of such mesic microenvironments

in regionally dry climates suggests that the water

sources supplying these environments are at least

partly decoupled from the regional climate and suffi-

ciently persistent over long time periods to allow

mesophytic plants to establish and persist. Such

decoupling can occur through temporal or spatial

separation between inputs of water to the landscape

and the availability of that water to plants. For

instance, wet-season rainfall can percolate down to

deep soils or regolith, where it can be accessed by

deep-rooted species during dry periods (Dawson &

Pate, 1996; Miller et al., 2010), and groundwater may

be recharged in mountainous catchments and travel

thousands of kilometers over thousands of years

before being discharged into surface waters (e.g., in

the Monte Desert in Argentina, Jobb�agy et al., 2011;

or in the mound springs of the Great Artesian Basin

in South Australia, Ponder, 1986). The decoupling of

water availability in mesic microenvironments from

regional climatic characteristics raises the possibility

that these microenvironments may also be buffered

from changes in regional precipitation and tempera-

ture – creating the potential for persistence of wet

microsites even in the face of regional climatic warm-

ing and/or drying (IPCC, 2014). Similar moist

microenvironments, such as floodplains, pole-facing

slopes, and moist microsites (Svenning et al., 2008),

including those generated by varying groundwater

regimes (Monegato et al., 2015), are implicated in the

persistence of mesic species and woody vegetation

during sustained dry periods – for instance in Eur-

ope during the Late Pleniglacial and Last Glacial

Maximum (Magyari et al., 2014).

Persistent elevated water availability is a necessary,

but not sufficient, condition for a site to form a

hydrologic refugium. Whether ‘wet’ sites ultimately

become refugia depends on whether plant species are

able to persist there while being excluded from the

surrounding environment. Thus, hydrologic refugia

must satisfy multiple conditions, conceptually shown

in Fig. 2. The extent to which these conditions are

satisfied will determine the ‘capacity’ of the refu-

gium, or its ability to support species persistence

(Keppel et al., 2015): (i) the physical environment

must concentrate and preserve relatively mesic
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(a)

(b) (c)

Fig. 1 Examples of mesic microenvironments persisting in regionally arid climates. (a) Huacachina Oasis, Peru, (b) Shalala Cloud

Forest, Oman, (c) Kings Canyon, Central Australia

Fig. 2 This figure illustrates a hypothesized hierarchy of physical and ecological controls that would determine the suitability of a site

as a hydrologic refugium for a given species. A mesic microenvironment is formed by the intersection of (shifting) climatic characteris-

tics and the physical landscape that concentrates or disperses water resources. In a subset of such mesic microenvironments, the timing,

form, and quantity of water available are compatible with the hydrologic niche requirements of a given species, meaning that the sites

could support persistence of that species. To form a refugium, the site must also be available for colonization/persistence given biotic

interactions. Shifting climate is likely to alter both physical and biotic processes and thus the identity and availability of hydrologic

refugia.
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conditions, even in the context of a warming and

drying climate; (ii) the physiology, demography, and

morphological traits of the target species [i.e., the

hydrologic niche requirements (Araya et al., 2011;

Dawson, 1990; Silvertown et al., 2015, 1999)] must be

compatible (in terms of phenology, tolerance, and

other adaptive features) with the conditions in the

mesic site; and (iii) biotic interactions at the mesic

site must enable the target species to persist if pre-

sent (in situ refugia), or to disperse into, become

established and persist (ex situ refugia) in the mesic

location. In the terms employed by Keppel et al.

(2015) to define microrefugial capacity, the first con-

dition relates to the environmental and microclimatic

suitability of the site, while the latter two points

relate to its accessibility to species.

Mesic microrefugia are likely to be most important in

places where climate change causes regional water bal-

ance to shift toward more water-limited conditions. The

regional water balance is influenced by evaporative

demand (which is in turn mediated by atmospheric

vapor pressure deficits and the land surface energy bal-

ance) relative to the availability of water to meet this

demand (which is mediated by precipitation volumes

and timing, snow melt timing, the storage capacity of

soils/regolith, and plant rooting depths into this sub-

strate, see the next Section). Thus, the response of the

water balance to climate change is multifaceted, and var-

ies through space in both its directionality and rate of

change (Dobrowski et al., 2013). Similarly, the different

components of the water balance are subject to varying

degrees of certainty in terms of their response to anthro-

pogenic climate forcing. Temperature increases are pre-

dicted with reasonable consistency across most climate

model ensembles (Shiogama et al., 2016), meaning that

related hydrologic variables such as snow–rain fraction

and snow melt timing can also be predicted with some

confidence (Krasting et al., 2013; Piazza et al., 2014). Con-

versely, uncertainty obscures predictions of regional

rainfall patterns (Clark et al., 2016; Dai & Zhao, 2016).

Other temperature-related variables such as potential

evaporation – although expected to increase with cli-

mate change – actually declined over much of the globe

during the 20th century, as measured by pan evapora-

tion rates (Roderick & Farquhar, 2002; Roderick et al.,

2009). Given this complexity, variability, and uncer-

tainty, conclusions about the location, magnitude, and

prevalence of regional climatic drying in response to

anthropogenic climate change should be made cau-

tiously. Nonetheless, an emerging consensus anticipates

drying trends across regions that currently experience

water-limited conditions (i.e., mediterranean-type cli-

mates, the semiarid subtropics, and the arid zone),

equivalent to roughly 40% of the terrestrial land surface

(Wiltshire et al., 2013; IPCC, 2014, Schewe et al., 2014;

Gosling & Arnell, 2016). These regions include numer-

ous biodiversity hotspots (e.g., the California Floristic

Province, Mexico’s Madrean Pine-Oak Woodlands, the

Brazilian Cerrado, the Horn of Africa, South Africa’s

Succuluent Karoo, Cape Floristic Province and Maputa-

land-Pondoland-Albany regions, Southwest Australia,

the Mediterranean Basin).

The confluence of probable drying trends in water-

limited ecosystems (Flint & Flint, 2012) with the signifi-

cance of many of these ecosystems for global biodiver-

sity motivates this study. We use the breakdown of

refugial capacity outlined above and illustrated in Fig. 2

to explore how mesic hydrologic refugia for plants are

created and maintained. The physical processes and fea-

tures that create mesic microenvironments (which may

or may not ultimately function as hydrologic refugia)

are described next. The following section considers how

to identify potential hydrologic refugia, and addresses

the requirements that hydrologic refugia be compatible

with the hydrologic niche of a target species and accessi-

ble for species establishment and/or persistence. Then, a

case study of hydrologic refugia in California oak wood-

lands is presented. Finally, the role and potential chal-

lenges of using hydrologic refugia in climate change

adaptation planning are discussed.

A physical process basis for heterogeneity of plant-

available moisture

From a hydrologic standpoint, mesic microenviron-

ments arise from localized physical or biological pro-

cesses that enhance water inputs or reduce water losses

from the root zone. The resulting microenvironments

exhibit high rates of vegetation water use, relative to

the rest of the landscape (e.g., along a riparian corri-

dor), high volumes of stored water available for

exploitation by vegetation (e.g., near springs or seeps),

or both. Important hydrologic processes altering the

balance of water inputs, outputs, and storage are illus-

trated in Fig. 3. Descriptions of the processes, examples

of their occurrence, and their relative importance and

sensitivities to climate change are detailed in the text

throughout this section, and in Table 1. These processes

have differential sensitivity to climate change (Osborne

et al., 1998; Johnstone & Dawson, 2010), and conse-

quently, different implications for the persistence and

behavior of mesic microenvironments (Ashcroft, 2010),

and thus for species colonization, persistence within

and utilization as microrefugia. As shown in Fig. 4,

stable hydrologic refugia exist in places where water

availability to plants is effectively unchanged (i.e.,

remains within the bounds of natural – or nonhuman

influenced – climate variability) despite warming and
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drying trends in regional climate. Relative hydrologic

refugia preserve differences in relative moisture avail-

ability between the microsite and the surrounding land-

scape, experiencing drying in absolute terms in concert

with changes in regional climate. A relative refugium

may also be transient, ceasing to function as a refugium

over sufficiently long periods of drying. The hydrologic

residence times for water associated with different

hydrologic processes provide a proxy for the timescales

of hydrologic response to climate change. These are

used (in Table 1) to summarize the implications of

hydrologic mechanisms for the behavior of refugia sup-

ported by each mechanism.

Subsurface fluxes: groundwater flow and hydraulic
redistribution

Fluxes in the subsurface environment are dominated by

saturated groundwater flow in deep or shallow aqui-

fers. Shallow groundwater is accessible to plants over

7–17% of the globe (Fan et al., 2013) and is used by veg-

etation in a wide range of ecosystems (Canadell et al.,

1996). Although salt or oxygen stress can be increased

by saturated soils (Gill & Jackson, 2000; Jackson et al.,

2000; Rengasamy et al., 2003; Araya et al., 2011), access

to groundwater is typically beneficial to plants. Access

can be enhanced by hydraulic redistribution – where

roots act as conduits between soil layers – allowing

deep-rooted plants to supply water to shallow roots

and shallow-rooted nearby individuals (Pe~nuelas &

Filella, 2003). Hydraulic redistribution is ubiquitous,

especially in seasonally dry ecosystems (Dawson, 1993;

Caldwell et al., 1998), and plays a significant role in sus-

taining vegetation through droughts (Bauerle et al.,

2008), supporting ecosystem transpiration (Lee et al.,

2005) and maintaining dominance of mesophytic com-

munities in seasonally dry regions (Wang et al., 2011).

Analogously, laterally spreading root systems, common

in clonal individuals, allow water transport across the

radially spreading plants and facilitate the colonization

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

Fig. 3 Illustration of hydrologic processes and landscape features associated with potential mesic microrefugia. See discussion of

hydrologic processes and different types of refugia below.
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Table 1 Features associated with potential hydrologic refugia. The response times indicated are based on the range of timescales

presented by Bl€oschl & Sivapalan (1995).

Landscape or ecological feature

Hydrologic response

time scales Sensitivity to local climate change

Subsurface water

Shallow/perched aquifer

Abiotic – local precip.

dependent (Fig. 3, D, E&H)

Drainages and channels Days – Years Medium – High

Topographic convergence/

break in slope

Months – Decades Likely to support relative refugia

Permeability contrasts:

Aquicludes,

Aquitards, Clay/caliche lenses,

Permafrost, Soil/

regolith/bedrock transitions

Months – Decades

Climate-independent topographic /

geologic mechanisms concentrate

water resources: water resource

availability depends on local

precipitation and evaporation

(storage in aquifer slows responses

to local climate change)

Abiotic – Non-local precip.

dependent (Figure 3, D)

Riparian areas Days – Years Low-Medium

Floodplains, wetlands Likely to support stable and

relative refugia

Water availability may be nonlocal

(for riparian zones, floodplains and

wetlands associated with high

stream order)

Biotic (Fig. 3, G&I) Deep rooting systems –
hydraulic redistribution

Hours – Decades High

Beaver dams Years – Decades

Likely to support transient refugia

Rodent mound/pool complexes Years – Decades

Species may be climatically sensitive;

water resource availability depends

on local climate

Deep groundwater

Abiotic (Fig. 3, A&H) Fractures/Faults Months – Centuries Low

Lithologic contrasts Likely to support stable refugia

Seeps/Springs/Discharge sites Separation of recharge and discharge

reduces sensitivity to local climate;

response timescales increase with

increasing scale of aquifer and

decreasing permeability of aquifer

substrate; geologic features

independent of climate

Spatially variable water inputs (throughfall, stemflow, runoff and infiltration)

Abiotic Rocky outcrops/soil texture

contrasts

Months – Centuries Medium

Likely to support relative refugia

Rock and soil type independent of

climate; sensitive to local rainfall

Biotic (Fig. 3, C) Canopy structure – precipitation

capture and redistribution

Hours – Years High

Infiltration capacity contrasts

(vegetation or soil crust induced)

Likely to support transient refugia

Biotic processes climatically

dependent; sensitive to local rainfall

Occult precipitation

Abiotic (Fig. 3, F&J) Coastal proximity/orientation Hours – Months Medium

Likely to support stable refugiaFog belts, high elevation areas of

fog concentration Conflicting predictions about

coastal fog response to

climate change; upwelling relatively

insensitive to climate; cloud

ceilings rising

Canyons and valleys – cold air

and fog drainage/shading (dew)

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 2941–2961
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of dry sites, supplied by water transported from distant

(~10+m), wetter locations (Barbier et al., 2008).

Biotic agents can alter groundwater availability by

changing the physical environment (Reed &

Amundson, 2007; Cramer & Barger, 2014). Pocket

gophers (Geomys spp.) shape surface microtopography

by burrowing (Reichman & Seabloom, 2002), creating a

mound-pool landscape with dry mounds surrounded

Table 1 (continued)

Landscape or ecological feature

Hydrologic response

time scales Sensitivity to local climate change

Snow or ice drift/accumulation

Abiotic (Fig. 3, B) Glacial cirques Months High

Leeward slopes Likely to support transient refugia only

Boulders Snow occurrence sensitive to climate

Biotic Trees/treeline Months High

Likely to support transient refugia only

Snow occurrence and tree species

sensitive to climate

Spatially variable evaporation/transpiration suppression

(reduced radiation, temperature or increased humidity)

Abiotic (Fig. 4, B&J) Aspect/topography Months – Years Medium

Likely to support relative refugiaFog belts, high elevation areas

of fog concentration

Hours – Months
Topographic features stable;

sensitive to local precipitation

Biotic Canopy structure – shading/

mixing suppression

Months-Years High

Likely to support transient refugia only

Species sensitivity to climate

Italics refer to the refugium categories described in figure 4.

Fig. 4 Schematic illustration of stable, relative, and transient refugia generated as a climate moves from contemporary conditions (solid

lines) through a period of moderate warming and drying (dashed line) to a significantly hotter and drier state (dotted line). Stable refugia

maintain wet conditions suitable for mesophytic species such as ‘Species 1’ under all scenarios. Relative refugia remain wet compared

with the remainder of the landscape for all climate scenarios, but may dry sufficiently that mesophytic species are replaced by more xero-

phytic types (Species 2) under warming scenarios. The remainder of the landscape becomes suitable primarily for truly xeric species (Spe-

cies 3) as strong warming and drying continues. Temporary persistence of mesophytic species in the warming climate may arise in

transient refugia, although these refugia may only exist as long as a water store remains in the landscape, and as such may disappear if

dry conditions persist. A detailed discussion of community interactions in stable, relative, and transient refugia is provided below.

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 2941–2961

HYDROLOGIC REFUGIA, PLANTS, AND CLIMATE CHANGE 2947



by seasonally flooded depressions (Cox & Gakahu,

1986; Cox & Roig, 1986; Lovegrove & Siegfried, 1986;

Cox & Scheffer, 1991; Horwath & Johnson, 2006). Inun-

dation gradients created by the mound-pool complex

define local plant distributions (Bauder, 1987, 2005;

Barbour et al., 2005).

Groundwater may be present near the soil surface

due to impeded vertical drainage, due to rock, clay,

hydrophobic soil, or permafrost layers, causing perched

aquifers or surface lakes to form (Shannon & Brezonik,

1972; Dingman, 1994; Woo et al., 2008) (also see Fig. 1a,

Fig. 3 panel d). Groundwater may be forced toward the

surface by obstructions to horizontal flow, so seeps and

springs form upslope of the obstruction (Engel et al.,

1987) (Fig. 3, panel h). Bedrock depressions or fractures

can store additional water (compared with shallow or

unfractured bedrock), enhancing plant water availabil-

ity (Miller et al., 2010). Such idiosyncratic and localized

processes support extensive plant groundwater use but

are difficult to predict at larger scales (Lewis & Burgy,

1964; Dawson, 1993; Thorburn et al., 1993; Zencich et al.,

2002; Gries et al., 2003; Hultine et al., 2003; Pe~nuelas &

Filella, 2003; Chimner & Cooper, 2004; Jewett et al.,

2004; Kurz-Besson et al., 2006; Bleby et al., 2010; Miller

et al., 2010; Doody & Benyon, 2011; Jobb�agy et al., 2011).

The distribution and surface expression of ground-

water are often topographically dictated. For instance,

the widely used topographic wetness index (TWI, the log

of the ratio of upslope catchment area to local land sur-

face slope gradient) represents the balance between the

shallow groundwater volumes routed to a given loca-

tion, and the rate of drainage from that location (Beven

& Kirkby, 1979). TWI predicts groundwater expression

(as channels, seeps, or riparian water tables) in conver-

gent topographies with large upslope catchment areas

(Fig. 3, panel e), and at the toes of hillslopes where

slope gradients drop dramatically (Eamus & Froend,

2006); at a landscape scale, variation in TWI can be a

strong predictor of vegetation density (Deng et al.,

2007; Hwang et al., 2011).

Surface water bodies such as rivers or lakes can also

supply groundwater to plants. Vegetation lines desert

rivers and oases (Snyder & Williams, 2000; Lamontagne

et al., 2005; O’Grady et al., 2006a; Butler et al., 2007;

Lautz, 2008; Scott et al., 2008), supported by groundwa-

ter seeping from the surface water body (Fig. 3 panel

d). Increased volumes and residence times of surface

water in the landscape tend to increase the influence of

the surface water bodies on surrounding plant commu-

nities. Damming of streams by beavers (Castor spp.,

Fig. 3 panel g) may sustain high water tables and wet-

lands (Baker et al., 2005; Westbrook et al., 2006, 2011;

Wolf et al., 2007), even in relatively dry climates (West-

brook et al., 2006).

The groundwater processes discussed above all relate

to shallow aquifers recharged directly by local precipi-

tation, which are often responsive to climate [with

hydraulic residence times of months to years (Bl€oschl &

Sivapalan, 1995)]. These water stores are likely to be

diminished by warming and drying conditions, while

still representing wet sites on the landscape

(V€or€osmarty et al., 2000). Shallow groundwater is likely

to be associated with relative hydrologic refugia. Con-

versely, deep and confined groundwater aquifers may

contain ancient water (up to 106 years old), and be lar-

gely decoupled from local climatic fluctuations. Deep

groundwater aquifers are often larger in extent than

shallow aquifers and can connect geographically dis-

tinct recharge and discharge sites. Surface expression of

deep groundwater in the form of seeps, springs, and

desert oases, and their associated plant communities

[(Faunt, 1997; Jobb�agy et al., 2011), Fig. 3 panels a and

h] may thus provide stable hydrologic refugia.

Water inputs and losses across the soil atmosphere
boundary

A local increase in water entering the root zone, or a

local reduction in evaporation and transpiration losses

to the atmosphere can also form mesic microenviron-

ments. In the atmosphere, rainfall, snowfall, and fog/

dew occurrence vary through space, not only over large

gradients (such as those induced by orographic rain-

fall), but also locally. For instance, higher wind speeds

on ridges reduce precipitation volumes compared with

adjacent valleys (Sevruk, 1997; Watson et al., 2008).

Small-scale changes in snow water inputs are reflected

in the pattern of available meltwater and infiltration

(Essery et al., 1999; Essery & Pomeroy, 2004; Barnett

et al., 2005), influencing soil moisture (Billings & Bliss,

1959), individual plants’ water status and use (Thilenius,

1975; Sturm et al., 2001; Walker et al., 2001; Sugimoto

et al., 2002; Wipf & Rixen, 2010), and community compo-

sition (Billings & Bliss, 1959; Edmonds et al., 2006; Helm,

1982; Walker et al., 1993; Wipf & Rixen, 2010, Fig. 3

panel b). Snow scouring and drifting cause snowpack to

accumulate on the leeward side of ridges and vegetation

(Sturm et al., 2001). Snowpack persists longer into the

growing season on poleward-facing slopes (Green &

Osborne, 1998; Osborne et al., 1998; Essery et al., 1999;

Sturm et al., 2001; Essery & Pomeroy, 2004). Again, these

spatial differences increase soil water during the grow-

ing season and support locally mesophytic vegetation

(Walker et al., 2001). The persistence of rare mesic spe-

cies during past interglacial warming periods in Central

Europe is attributed to such locations (Jen�ık, 1959). Pro-

cesses of snowfall variation, snow scour, and accumula-

tion are largely independent of climatic warming and
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drying, although snowpack areas and snow volumes

may be reduced. Thus, these processes could create both

relative and stable hydrologic refugia.

Occult forms of precipitation (fog, mist, dew) can also

be spatially localized. For example, fog interception

and drip are concentrated on ridges, at low elevation

(Whiteman et al., 2001) and at forest edges (Dawson,

1998; Ewing et al., 2009; Simonin et al., 2009); dew pref-

erentially forms in cold air drainages ((Baier, 1966;

Kidron, 1999, 2005; Pypker et al., 2007), Fig. 3 panel f)

and wherever condensation surfaces are plentiful.

Again, these patterns of input drive the pattern of soil

moisture availability (Dawson, 1998), and plant water

status over tremendously diverse climates (Lancaster

et al., 1984; Dawson, 1998; Kappelle et al., 2004; Limm

et al., 2009; Goldsmith et al., 2012, 2013; Hesse, 2012;

Hiatt et al., 2012; Eller et al., 2013). Fog can increase

water input to plants through direct foliar uptake of

water (Limm et al., 2009), Fig. 3 panel j). Foliar water

uptake relieves leaf-level water stress (Burgess & Daw-

son, 2004; Limm et al., 2009) and can result in sap flow

reversals throughout the plant, even replenishing soil

moisture reserves (Eller et al., 2013). Fog, mist, and

clouds suppress transpiration from leaves and reduce

evaporative losses by providing persistently dim, cool,

and humid conditions (Barradas & Glez-Medell�ın,

1999). Fog cover reduces transpiration in cloud forests

by 30% or more compared with nonfog conditions (Rit-

ter et al., 2009; Goldsmith et al., 2012, 2013). Transpira-

tion suppression by fog improved seedling recruitment

in a California coastal grassland (Kennedy & Sousa,

2006), and is responsible for approximately one-third of

the water balance of coast redwood (Sequoia semper-

virens) (Burgess & Dawson, 2004). Dew can have similar

effects (Duvdevani, 1964; Matimati, 2009, Hill et al.

2015). The combined effects of fog drip, leaf uptake,

and transpiration suppression can sustain species

through drought: in Pinus muricata forests, these pro-

cesses reduced drought stress by 50%, and buffered

against drought mortality (Fischer et al., 2009). Fog is

essential to the persistence of coast redwoods through-

out much of their range, and supports many plant com-

munities in low rainfall environments (Corbin et al.,

2005; Dawson, 1998; Hiatt et al., 2012; Lancaster et al.,

1984). The sensitivity of fog/cloud/mist occurrence to

shifting climatic conditions is likely to be variable:

Cloud ceilings, for instance, are likely to rise, poten-

tially reducing cloud forest ranges. Although the refu-

gia created by clouds are likely to retain high levels of

water availability and are thus ‘stable’ in the sense that

absolute water availability is retained, the spatial extent

of such stable refugia is likely to shrink to those eleva-

tions where frequent cloud cover persists. Coastal fog

caused by upwelling of cold water may be more

independent of local climate, potentially generating

stable hydrologic refugia over a constant area in space.

Even when rain/snow/fog water input is uniform in

space, canopy interception or surface runoff can con-

centrate (or dissipate) this water before it enters root

zones. Canopy interception induces small-scale ran-

domness in throughfall fluxes across the canopy (often

concentrated at a canopy drip line, Fig. 3 panel c), and

highly directed stemflow. Stemflow directs water fluxes

toward the root zone (Levia & Frost, 2003, 2006; John-

son & Lehmann, 2006) and may disproportionately

drive deep recharge. Arid plant species often exhibit

particularly high proportions of stemflow (Martinez-

Meza & Whitford, 1996).

Spatial variations in infiltration capacity may cause

rapid spatial organization of water availability through

‘runoff–runon’ mechanisms (Ludwig & Tongway, 1995;

Thompson et al., 2011). Runoff is generated on low

infiltration capacity sites (e.g., crusted or rocky areas),

flows downslope, and subsequently infiltrates in areas

with high infiltration capacity [e.g., macroporous soils

often associated with vegetation (Belnap, 2006; Thomp-

son et al., 2010a; Trimble & Mendel, 1995)]. Runoff–
runon mechanisms can enhance infiltration volumes by

a factor of eight times compared with rainfall (Galle

et al., 1999; Niemeyer et al., 2014). These mechanisms

are often essential for the maintenance of vegetation in

otherwise arid regions (Thompson et al., 2010b; Assou-

line et al., 2015). They are often biologically mediated,

primarily through the formation of biological soil crusts

(Belnap, 2006). In particular, ‘smooth’ microphytic

crusts forming in arid deserts may reduce infiltration

rates by a factor of 10 (Thompson et al., 2011), resulting

in concentrated runoff formation (Belnap et al., 2001;

Maestre et al., 2002). In cool deserts, microbiota can

form ‘rugose’ microphytic crusts that add roughness to

the desert surface, enhancing rainfall infiltration,

increasing dew formation and capture, reducing evapo-

rative losses, and promoting the formation of mesic

microsites (Schulten, 1985; West, 1990; Baker et al.,

2005; Belnap, 2006; Ram & Aaron, 2007; Liu et al., 2009;

Su et al., 2009; Li et al., 2010; Warren, 2014). As an abi-

otic example, runoff from a large granite outcrop sup-

plies water to a relict vegetation population of jarrah

(Eucalyptus marginata) in Western Australia (Abbot,

1984). Although located 100s of kilometers beyond the

species’ contemporary distribution, the runoff mecha-

nism creates a stable hydrologic refugium in an other-

wise arid landscape. Most redistribution mechanisms

incorporate biotic processes however, making them

vulnerable to changes in local climate. By creating a

positive feedback in which water availability to plants

depends on the extent and health of plant cover,

runon–runoff mechanisms can place ecosystems at risk
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of threshold-like collapse if increased drought causes

vegetation mortality – as this mortality undermines the

mechanism sustaining the refugium (K�efi et al., 2007a,

b, 2011). Consequently, runon–runoff mechanisms will

likely support transient hydrologic refugia.

Topography, particularly aspect, has well-known

effects on temperature, humidity, and light, causing

large differences in evaporation rates and annual

energy balance that can impact tree transpiration. Most

importantly, slopes that face the equator receive ele-

vated solar radiation relative to pole-oriented slopes,

increasing evaporative demand, and causing sharp dif-

ferentiation in available water storage and water losses

between different slope aspects, associated with differ-

ences in slope gradient, soil textural properties, and soil

depths (Hanna et al., 1982; Stephenson, 1998; Geroy

et al., 2011). Unsurprisingly, these physical variations

also result in sharp differentiation in plant communities

by aspect. More subtly, atmospheric mixing is weaker

in valleys than on ridges, increasing valley humidity

and reducing evapotranspiration rates (Mackay et al.,

2002, 2007; Loranty et al., 2008). Vegetation canopies

shade the land surface and impede gas transfer from

land to atmosphere, generating distinct understory and

canopy environments that depend strongly on canopy

structure (Rambo & North, 2009; Ma et al., 2010). Old

growth forests may buffer understory communities

from the effects of regional warming (De Frenne et al.,

2013; Stevens et al., 2015) and provide microrefugia

(Olson et al., 2012). Biotically mediated low-evaporation

environments are likely to be sensitive to local climate

change, and perhaps more pressingly, to human pres-

sures such as deforestation and land-use change (Han-

sen et al., 2013), suggesting forest conservation and

management – already essential for direct conservation

of species and their habitat – may also be important to

protect the biophysical processes that support refugia,

and the climatic resilience of forests and the moist

microsites they contain. Conversely, topographic-based

differences in evaporative demand are likely to persist.

Topographic shading is thus a likely mechanism to

form relative hydrologic refugia, which will respond to

a regional drying and warming climate, while remain-

ing more mesic than exposed or equatorially facing

slopes (Guti�errez-Jurado et al., 2013).

Intersecting physical processes

Multiple drivers of spatial variation in local water bal-

ances arise in real landscapes, and occur on top of

temporal patterns of precipitation occurrence and evap-

orative demand. Figure 5 shows how the formation of

perched water tables in the valley floors during the

early growing season (Fig. 5 panel a) interacts with

elevation controls on humidity and fog frequency

(Fig. 5, panel b) to create strong ecological contrasts

between the dense riparian woodlands in the valleys

(Fig. 5 panel c) and open grasslands on the hillslopes

(Fig. 5 panel d). Although the trend of increasing water

availability at lower elevations is clear, many site-speci-

fic, idiosyncratic features in the landscape (such as vari-

able bedrock depths and seismic faulting) influence

local water availability in a less predictable fashion.

Predicting the locations of hydrologic refugia

Elevated water availability at any site is sufficient to

form a mesic microenvironment, but is not a sufficient

criterion to claim that the site could act as a hydro-

logic refugium. This is because, as illustrated in Fig. 2,

refugia must also meet biological requirements. For

the mesic site to support a given plant species, the

hydrologic characteristics of the site, including the

quantity of water available, the form and location of

this water, and the timing of its availability, must be

compatible with the requirements of the species. The

site must also be available for colonization or other-

wise support the persistence of the species in the face

of competitive, facilitative, and other biotic interac-

tions with a changing community. A refugium must

also protect the species from other threats associated

with climate change, such as thermal stress or natural

disturbances associated with fires (Wilkin et al., 2016)

or floods.

Species-specific effects: moisture accessibility, synchrony,
and complementarity

Plants adjust differently to the stresses and benefits

conferred by particular local hydrologic and climatic

regimes. These species-specific effects (Fig. 4) result in

niche partitioning of space along aeration and dryness

gradients (Dawson, 1990). They also result in the parti-

tioning of water consumption among different species,

and separation of recruitment patterns in time, as water

supplies vary (Silvertown et al., 2015). These effects are

referred to as hydrologic niche segregation. Different spe-

cies’ locations in the landscape separate along aera-

tion/wetness axes, indicating that hydrologic niche

requirements can structure plant communities through

space (Silvertown et al., 1999, 2015). Compatibility

between the characteristics of a species’ hydrologic

niche and the physical hydrology of a mesic site is

essential for that site to provide a hydrologic refugium.

Morphological, physiological, phenological, and bio-

chemical adaptations determine the hydrologic niche

requirements of different species by dictating which

water sources can be used, how each species uses them,
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and what trade-offs might be associated with such use.

For example, deep root systems facilitate the uptake of

subsurface water stores (Canadell et al., 1996; Oshun

et al., 2016), and morphological and physiological adap-

tations of some leaves can enhance foliar uptake of

water (Limm et al., 2009) or the efficiency of fog capture

and drip (Burgess & Dawson, 2004; Limm et al., 2009;

Ritter et al., 2009; Goldsmith et al., 2012). Individuals

without these adaptive features may not be able to

access, or efficiently exploit the additional water associ-

ated with the presence of groundwater or the occur-

rence of occult water sources like fog (Dawson, 1998).

Use of this additional water, however, exposes plants

to risks that would not be present in drier sites. For

instance, deep root systems are likely to experience

inundation and aeration stress (Jackson & Colmer,

2005), plants in riparian environments are exposed to

disturbance during flood events (Muneepeerakul et al.,

2007), and plants growing in fog belts could be exposed

to an elevated risk of foliar disease due to persistent

leaf wetness (Jones, 1986). For a mesic microenviron-

ment to provide a refugium for a given species, the spe-

cies’ traits must allow for the exploitation of the

benefits and tolerance of the costs of inhabiting that

microenvironment.

The timing of moisture availability in the microen-

vironment must also be compatible with the needs of

a target species. Plant water demands vary through

time due to changes in leaf area (e.g., in deciduous

species, Vico et al., 2014), the timing of germination

(e.g., in annual species, Kemp, 1983), and changes in

energy availability. For example, peaks in radiation

lead to Northern Californian evergreen tree species

maximizing water use during summer (Link et al.,

2014), which is also the period of highest landscape-

level climate water deficit in this mediterranean-type

Fig. 5 Processes associated with the creation of mesic microenvironments at the Blue Oak Ranch Reserve in central California (oak

savanna). (a) Late winter soil moisture forms a perched water table along hillslopes, receding during the summer, but sustaining wet

conditions in riparian habitats. (b) In low-lying areas, fog occurs as often as 3 days out of 4, but less than once every 5 days on the

ridges. Mean relative humidity (interpolated from a network of 30 sensors across the site) varies by 30% between the valley and ridge

locations, indicating large differences in mean evaporative demand. (c) Low-lying areas support riparian forests, drawing on subsur-

face water and with relatively lower evaporative demands than the (d) ridge environments, which, with low water availability and high

evaporative demand, support mostly annual grasses and little primary production during summer. Photo credit: Michael Hamilton.
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climate. A mesic microenvironment that sustained

water supplies to trees during this period would be

expected to have a strong influence on species persis-

tence (Miller et al., 2010). Complementary timing of

peak snow melt and peak radiation enables montane

meadow plants to make use of meltwater resources

(Godsey et al., 2014), which would not be as effi-

ciently used if melt occurred earlier in the season.

Plasticity in the phenology of peak water use,

observed in some invasive grassland species (Wolko-

vich & Cleland, 2014), may enable species to adapt

to a wider array of potential climate refugia by

adjusting phenology so that peak water demands

coincide with peak water availability.

On longer timescales, similar synchronies between

plant water requirements and environmental water

availability in refugia may enable plants to survive

drought-vulnerable life stages (Liu et al., 2009). The

‘ecological ratchet’ theory (Jackson et al., 2009) argues

that seedlings establish in narrower environmental

windows compared with those in which adults persist.

The availability of hydrologic refugia during a

drought-vulnerable young life stage may thus impact

the distribution of adult populations. Temporary

hydrologic conditions, such as flooding, can raise the

water table and create ephemeral regeneration refugia,

allowing the roots of young life stages to initially reach

and then follow the descending water table to its

typical depth (Mahoney and Rood 1998), creating a

long-term population-level effect from a temporary

hydrologic condition. For example, Populus regenera-

tion in the Taklamakan Desert occurs during rare flood

events and is tied to high groundwater availability

(Bruelheide et al., 2003; Gries et al., 2003).

Hydrologic refugia that overlap or complement ther-

mal and fire refugia may be particularly important in

drying, warming climates. Many of the features associ-

ated with mesic microenvironments (lower elevation,

shading, fog) also are associated with cooler microcli-

mates (Dobrowski, 2011) and fire refugia (Mackey et al.,

2002, 2012; Wilkin et al., 2016), so such complementar-

ity may be widespread. For example, in addition to pro-

viding mesic microenvironments, forested riparian

areas (Dwire & Boone, 2003) and forests on northeast-

and north-facing slopes (Taylor & Skinner, 2003;

Alexander et al., 2006) may maintain lower fire fre-

quency and severity relative to the surrounding land-

scape, and provide cool microclimates.

Community interactions

Species interactions and their response to changing cli-

mate and hydrology (Gilman et al., 2010; Blois et al.,

2013; HilleRisLambers et al., 2013) will also influence

the function of mesic sites as microrefugia. However,

predicting specific trajectories of such interactions

under climate change remains challenging. Studies that

manipulated hydrologic conditions and examined the

effects on community structure reveal complex tran-

sient conditions and intricate trophic interactions. For

example, Suttle et al. (2007) found that increases in

spring moisture availability in an experimental grass-

land initially favored growth of native plant species,

but the increase of a nitrogen fixer increased soil nitro-

gen, leading to a subsequent increase in invasive plants.

As species’ dispersal into an ex situ refugium outside

their original distribution may create novel species

interactions, including priority effects (Moorcroft,

2006), ecological release (Tilman, 1994), and competi-

tive suppression (Grime, 1973), capacity to predict com-

munity dynamics is limited. Dispersal processes

themselves also can be climatically mediated (Thomp-

son & Katul, 2013), so there is substantial uncertainty

around which species may disperse into ex situ refugia

and the impacts on species interactions.

Certain biotic interactions in mesic microenviron-

ments are likely to intensify in a drying climate, and

could provide important monitoring targets as part of

efforts to anticipate hydrologic refugia. In systems

where water is already a limiting resource, both facilita-

tion and competitive interactions around water already

exist and may influence community responses to dry-

ing in relative and stable microrefugia. In relative

microrefugia, communities would be expected to shift

in parallel along hydrologic niche axes, as individual

species simultaneously track their hydrologic niches

through space. With climatic drying, the most meso-

phytic species in the community would be expected to

be extirpated first as the wettest conditions disappear,

analogously to the frequently projected loss of moun-

tain-top species with warming temperatures. Stable

microrefugia, conversely, preserve the hydrologic niche

for mesophytic species within the refugium. As the sur-

rounding landscape dries, competitive interactions

likely would become intensified as species tracked their

hydrologic niches along hydrologic gradients toward

the refugium, increasing competitive stress on species

present in the mesic microenvironment. Species that

previously partitioned water use among different mois-

ture sources may converge on common sources, chang-

ing hydrologic niche partitioning within the

community. Transient versions of this type of competi-

tive resource use pattern occur between species that

use complementary moisture sources during non-

drought conditions, but compete for the same sources

during drought (Schwinning, 2008), and would be

strong indicators of where competitive interactions

would intensify with climate change. Subject to more
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persistent drought, such competition could drive com-

petitive exclusion.

Positive interactions between species could either

amplify or constrain the role of a refugium. Shallow-

rooted nurse plant associates and understory or juve-

nile plants that benefit from hydraulic redistribution or

driplines may indirectly benefit from elevated water

availability in refugia. In contrast, mutualistic relation-

ships could also alter the suitability of refugia for part-

ner species, as both species would need to be successful

within the refugium (Jo€el et al., 2007; Memmott et al.,

2007). Large asymmetries in each species’ dispersal

rate, physiological tolerances, or other ecological con-

straints might inhibit establishment of mutualist pairs

within potential refugia (Schweiger et al., 2008; Dunn

et al., 2009).

Identifying locations of potential refugia

As outlined above, identifying mesic microenviron-

ments from physiographic, landscape, and vegetation

features (such as aspect, TWI, or extant vegetation com-

munities) is feasible in many cases. Further screening of

these sites as potential hydrologic refugia could be

based on an assessment of the relevance of the microen-

vironment to the ecology of a target species. Current or

historical relationships between the target species and

the potential refugial environment could provide fur-

ther indications of the potential for wet sites to become

refugia. Differential water stress across space and time

and life stage, including site- or regional-scale dryness

gradients, historical, annual, or seasonal variation in cli-

mate, or differential drought vulnerability of seedlings

versus adults may be used as ‘proxies’ to anticipate a

species’ response to future drier climates, and give

insight into the potential role of hydrologic refugia.

Potential refugia should have a realistic association

with the species’ hydrologic niche. For instance, obli-

gate use of a high groundwater microenvironment by a

phreatophytic species suggests that the microenviron-

ment is already contributing to persistence of that spe-

cies in the contemporary landscape. Facultative

adjustment of water use, for example, shifts to ground-

water utilization as soils become drier (Thomas & Sose-

bee, 1978; Flanagan et al., 1992; Thorburn et al., 1993;

Chimner & Cooper, 2004; Lamontagne et al., 2005;

O’Grady et al., 2006b; Oshun et al., 2016), as climate

increases in aridity through space or time (Meinzner,

1927; Dawson & Pate, 1996; Zencich et al., 2002; Chim-

ner & Cooper, 2004; O’Grady et al., 2006b; Nippert &

Knapp, 2007a,b), or as groundwater availability

increases (Yang et al., 2015), suggesting that groundwa-

ter availability might provide a hydrologic refugium

under drying conditions.

Relict or remnant distributions of species, represent-

ing a subset of a more widespread historical distribu-

tion, may also indicate where and in what form future

refugia from anthropogenic climate change could

occur. For example, the current distribution of coast

redwood (Sequoia sempervirens) is constrained within

the ‘coastal fog belt’ between California and Oregon

(Johnstone & Dawson, 2010). The species’ current dis-

tribution is considered to be relict of a much more

extensive historical distribution associated with a more

mesic and stable climate in western North America

(Raven & Axelrod, 1978; Noss, 2000). Under the present

mediterranean-type climate, fog appears to have pro-

vided the hydrologic conditions necessary for regional

coast redwood persistence. Fog might be expected to

play a similar role on local scales with projected cli-

matic drying (Fern�andez et al., 2015).

Current biogeographic patterns under relatively dry

conditions – for example, at the xeric edges of species

distributions or during drought – also may be used as

proxies for future drier climates, and give insight into

the role of hydrologic refugia. For example, at the

southern, drier areas of the coast redwood distribution,

coast redwood communities are generally located in

low, north-facing (Henson & Usner, 1993) or ocean-

facing slopes, or the bottoms of small canyons within a

matrix of xerophytic vegetation (Noss, 2000). Redwood

occurrence mirrors the local spatial pattern of high fog

accumulation, indicating that fog microenvironments

play a critical role in redwood survival in relatively dry

sites – and might be expected to do so more widely

across the species distribution as regional drying pro-

gresses.

Proxy indicators also may include selective recruit-

ment of drought-vulnerable life stages within mesic

microenvironments. For example, at sites near the

southern range of Pinus muricata, recruitment was lim-

ited to areas of high fog presence during severe

drought (Fischer et al., 2009), suggesting that fog could

act as a long-term microrefugium under a drier climate.

The proxies identified above can be combined to

explore hydrologic refugia potential for selected spe-

cies. We illustrate this approach in the next case study

section, focusing on two closely related, geographically

overlapping oaks, valley oak (Quercus lobata) and blue

oak (Quercus douglasii).

Case study of California oak woodlands

Valley and blue oak trees, endemic to the mediter-

ranean-type climate region of the California Floristic

Province, form the structural backbone of California

deciduous oak woodlands. While projections for future

precipitation are uncertain, rising temperatures will
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lead to drying of terrestrial ecosystems in California

(Flint et al., 2013; Ackerly et al., 2015). The persistence

of oak ecosystems under a drier regional climate will be

closely tied to the viability of these keystone trees. Both

species are projected to experience extensive distribu-

tional losses with climate change (Kueppers et al., 2005;

Zavaleta et al., 2007). Recent extraordinary drought in

California confirms the vulnerability of these oaks to a

future drier climate, with dieback recorded in over

150 000 ha of blue oak and 700 ha of valley oak wood-

land in summer 2015 (US Forest Service, 2015). These

oaks are ideal target species for exploring the role of

hydrologic refugia in a drying environment. This case

study synthesizes research on these oaks as relevant to

hydrologic refugia, and explores challenges to enacting

refugia-oriented conservation.

California oak ecosystems meet many of the crite-

ria for anticipating hydrologic refugia with the

frameworks described above. Their distributions

cross wide regional climatic and local microenviron-

mental gradients, and experience strong seasonality

and interannual variability in rainfall. With multi-

century lifespans and relatively drought-sensitive

young life stages (Mahall et al., 2009; Stahle et al.,

2013), current tree stand structure creates a living

record – local adult distributions record historical

recruitment limitation and survival, and young life

stage distributions provide comparative insights into

current limitations on recruitment. This creates ideal

conditions to observe the interactions between oak

performance, climate and mesic microenvironments,

and anticipate future hydrologic refugia. Given these

oaks’ deep-rooted morphology (within range of the

groundwater table in many locations, Griffin, 1973;

Lewis & Burgy, 1964), winter-deciduous habit, and

the climate in which peak photosynthetic demand

coincides with the protracted summer dry season,

we would anticipate the following microenviron-

ments to be particularly important for these species’

persistence in a drying climate: (i) areas where sum-

mer water sources supplement shallow soil moisture

reserves that are largely depleted by late summer,

and (ii) areas with water to support episodic recruit-

ment. Across much of the species’ current range,

groundwater appears to fulfill this role.

Even during nondrought years, these oaks use sub-

surface water during the dry season (Griffin, 1973;

Miller et al., 2010), indicating that the species’ hydro-

logic niche requirements are compatible with ground-

water refugia. In a blue oak woodland site, where

groundwater depth averaged 8 m, Miller et al. (2010)

attributed 80% of total summer evapotranspiration to

the use of groundwater, after shallow soil moisture was

depleted in spring.

In drought years, groundwater availability can

impact adult performance. In a historical study of val-

ley oak survival, the highest adult mortality was coinci-

dent with the period of years with the lowest

groundwater levels (Brown & Davis, 1991). In response

to California’s 2014–2015 drought, we saw a significant

correlation between blue oak adult canopy condition

and utilization of stored winter precipitation [typically

deep water, indicated by the stem water oxygen-18 and

deuterium isotope composition (Ehleringer & Dawson,

1992)] in the xeric section of the species distribution

(B.C. McLaughlin, unpublished results). Across a site-

scale microenvironmental gradient, oaks that grew in

areas with persistent groundwater availability

appeared more likely to survive multiple years of

drought. These findings may portend a future constric-

tion of adult oaks at the xeric distributional edge

around hydrologic refugia where groundwater remains

high.

Valley oak adults did not experience a similar extent

of dieback as blue oak during the 2014–15 drought (US

Forest Service, 2015), potentially because the lowland

and riparian distribution of these trees coincides with

areas of higher groundwater availability (Pavlik, 1991).

However, young valley oaks experience higher drought

stress than proximate adults (Mahall et al., 2009), and

spring recruits must survive a summer dry season as

their roots race to tap the water table. In studies on the

local spatial distribution and size class structure of blue

and valley oak, young life stages associated with more

mesic microclimates than adults in the thermally and

drought-stressed margin of the species’ distributions

(McLaughlin & Zavaleta, 2012; McLaughlin et al., 2014).

Valley oak saplings recruited in closer proximity to

groundwater sources than established adults in sites

along this ‘trailing edge’. No such effect arose in sites

where valley oak range is projected to persist or expand

(McLaughlin & Zavaleta, 2012). Similar patterns were

found for blue oak seedlings (McLaughlin et al., 2014).

Based on these findings, near-surface groundwater

would be expected to provide relative hydrologic refu-

gia for oaks under projected climatic drying. New

generations of oaks would form locally in microenvi-

ronments with high water tables accessible to young

plants, for instance near springs, or along stream

courses and flood plains. Adult oaks would also persist

in these environments, and in stable hydrologic refugia

formed by deeper groundwater.

Blue oak (and perhaps other deep-rooted Californian

oak species) support hydraulic lift (Ishikawa & Bledsoe,

2000; Querejeta et al., 2007), likely influencing water

availability to the surrounding plant community. They

also influence population dynamics of consumers,

such as the specialized predator/mutualist acorn
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woodpecker (Melanerpes formicvorous), through acorn

masting (Hannon et al., 1987) and habitat provisioning.

Hydrologic refugia for oaks are therefore likely to sup-

port indirect refugia for other species. As groundwater

is likely to be critical as a hydrologic refugium for Cali-

fornia oaks and the ecological communities, groundwa-

ter conservation and management within oak

ecosystems should be a priority. Such management is

challenged by ongoing and projected future land-use

change in these systems from relatively low water use

rangeland to irrigated agriculture and residential devel-

opment (Cameron et al., 2014). These changing land-

use patterns generally result in higher local groundwa-

ter withdrawals and reduced opportunity for recharge

into deep soils (Byrd et al., 2015). Irrigated areas, how-

ever, may serve as anthropogenic hydrologic refugia

for oaks, which frequently grow at the edges of culti-

vated lands. Efforts to encourage oak-friendly agricul-

tural practices to maximize the conservation benefits of

irrigated lands may become an important complement

to groundwater conservation.

To date, there has been little groundwater mapping

or monitoring in oak ecosystems. Widespread lack of

knowledge about groundwater systems in these areas

limits the identification of potential refugia and effec-

tive management of groundwater for conservation.

Groundwater systems are likely to vary dramatically

across the species distribution – for example, between

the Sierra Nevada foothills, where mountain block

recharge to groundwater (derived from snow melt at

high elevations) supports 20% of streamflow (Conklin

& Liu, 2008) and presumably local water tables, and the

western extent of California’s Central Valley where

groundwater is primarily recharged by winter rain

(Cain & Walkling, 2006; Parrish, 2011). Lithologies of

oak systems are also highly variable, and different rock

types that support oaks can provide strong contrasts in

the rates of groundwater recharge and opportunities

for groundwater storage (Booth et al., 2011). Given the

complexity and variability of the hydrology of oak

woodlands, hydrogeological investigations may be a

necessary step to protect these ecosystems in a future

dryer climate.

Conclusions

Species may evolve, acclimate, and/or move in

response to climate change. For long-lived, sessile spe-

cies with limited dispersal and long generation times,

whose physiological tolerances do not change on time-

scales relevant to climate change, persistence within

refugia may be the most important option for survival.

Many climatic (temperature) refugia are anticipated to

disappear in biologically relevant timeframes under

most future climate change scenarios (Hannah et al.,

2015). However, some forms of hydrologic refugia are

decoupled from the regional climate or buffered in

terms of how fast they will respond to changes in cli-

mate. Long-lived species may persist for centuries in

such refugia. Such stable refugia would arguably pro-

vide the most significant protection from a biophysical

standpoint; however, the features that create stability,

for example, deep groundwater, are often highly attrac-

tive for human exploitation, which places this stabiliz-

ing function at risk (Wada et al., 2010). Relative and

transient refugia would provide more temporary but

important protection. They would temporarily main-

tain seed production and dispersal, maintenance of

mutualist or facilitative relationships (MacNally et al.,

2000), collectively ‘buying time’ for climate change con-

servation strategies (i.e., assisted migration) to mature.

Relative and transient refugia may be particularly

important for sustaining current populations at the

‘trailing edge’ of species distributions, prime targets for

conservation given the likelihood that these subpopula-

tions may be genetically distinct from the main distri-

bution and relatively adapted to warmer/dryer

climates (Hampe & Petit, 2005).

Protecting ‘topographic’ or ‘landscape’ diversity has

emerged as a recent conservation strategy based on the

theory that areas with high topographic diversity (i.e.,

mountainous areas) likely will provide high climate

heterogeneity and climatic refugia (Davis & Shaw,

2001; Luoto & Heikkinen, 2008; Randin et al., 2009; Seo

et al., 2009; Ackerly et al., 2010; Mosblech et al., 2011;

Anderson et al., 2014). This strategy underrepresents

lowland regions in conservation planning (Merenlen-

der et al., 2004), often excluding locations of potential

hydrologic refugia such as groundwater discharge,

floodplains, and riparian areas. Similarly, accessible

topographic approaches, such as TWI, may fail to

account for the role of biota in modifying local micren-

vironments. While remote identification of some

ecosystem engineers (e.g., beavers, gophers, or soil

crusting) is challenging, other effects, such as those

induced by forest cover, could be readily mapped.

Including hydrologic diversity, whether physically or

biotically mediated, as well as topoclimatic drivers in

conservation planning, would create a more balanced

and comprehensive strategy for conservation and cli-

mate change refugia management (Morelli et al., 2016).

Complementing a focus on fine-scale topoclimates

(Flint & Flint, 2012) and climatic microrefugia (Ash-

croft, 2010; Dobrowski, 2011; Ashcroft et al., 2012; Kep-

pel et al., 2012; Keppel & Wardell-Johnson, 2015),

conservation planning needs to be informed by coupled

hydrologic, climatic, and species distribution modeling

efforts, and should motivate ongoing improvements in

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 2941–2961

HYDROLOGIC REFUGIA, PLANTS, AND CLIMATE CHANGE 2955



these modeling techniques. Ecohydrological modeling

frameworks are available on a variety of scales to assess

the interplay between plant water use and environmen-

tal water availability, with a variable climate (Tague &

Band, 2004; Ivanov et al., 2008; Feng et al., 2017); how-

ever, groundwater resources represent a frontier for

prediction. Despite new theories that may improve pre-

dictions of physical boundaries [e.g., depth to bedrock

(Rempe & Dietrich, 2014)], and climate vulnerability

assessments that use basic proxies for ground water

availability (Klausmeyer et al., 2011), de novo predic-

tions of local groundwater dynamics are challenging.

As in the case of oak systems, described above, hydro-

geologic investigations may need to become part of the

repertoire of conservation biology.

Despite challenges associated with coupled predic-

tions of climatic, hydrologic, and ecological responses

to climate change, such joint predictions are essential.

By ensuring that the roles of water in climate change

projections are not limited to precipitation totals, but

also address fog and dew, shallow and deep ground-

water, meltwater and redistributed water resources,

and other examples discussed here, we can improve

the identification of refugia. In doing so, we will

improve estimations of species distributional shifts and

identify critical opportunities for conservation in the

face of rapid climate change.
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