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[1] Spatial organization of vegetation into periodic, coherent
patterns arises from the interaction of positive and negative
ecological feedbacks. Naturally, the patterns reflect the char-
acteristics of the ecological processes that underlie their for-
mation. Direct inference of the parameters describing these
ecological processes from observations of vegetation spatial
patterns has not been attempted. If successful, such inference
can facilitate the parameterization and predictive use of veg-
etation pattern models. An inference technique based on
nonlinear filtering is proposed here and applied to estimate
the parameters of a single‐equation phenomenological
model of vegetation biomass patterning. Results derived
from modeled biomass data indicate that for sufficiently
accurate biomass observations (signal‐to‐noise ratios >4),
and spatial resolution of better than 10% of the pattern
wavelength, nonlinear filtering techniques recovered model
parameters with high fidelity. When applied to real‐world
imagery, reasonable parameters within the pattern‐forming
regime were inferred. The study demonstrates, for the first
time, the feasibility of inferring quantitative ecological
information from spatial observations of vegetation distribu-
tions. Citation: Thompson, S. E., and G. G. Katul (2011), Inferring
ecosystem parameters from observation of vegetation patterns,
Geophys. Res. Lett., 38, L20401, doi:10.1029/2011GL049182.

1. Introduction

[2] Periodic coherent vegetation patterns have a global dis-
tribution at desert margins, and arise from the superposition of
facilitative interactions between plants at small scales with
competitive interactions at large scales [Borgogno et al., 2009].
Numerous theoretical models of these systems [Lefever and
Lejeune, 1997; Rietkerk et al., 2002; Gilad et al., 2004], and
an increasing cohort of field and remote sensing studies
[Barbier et al., 2006; Kefi et al., 2007], suggest that they
represent the vegetated state of a bistable region in which loss
of vegetation cover could lead to locally irreversible deserti-
fication. Inferring the risk of such ecological collapse from
observations of vegetation patterns is an emerging scientific
imperative, but to date this inference has been qualitative and
diagnostic, and reliant on observing changes in the mor-
phology of the pattern as exogenous factors such as rainfall or
grazing are altered [Barbier et al., 2006; Kefi et al., 2007;

Deblauwe et al., 2011]. The main novelty in this study is to
demonstrate the feasibility of directly estimating ecosystem
parameters from the vegetation pattern using nonlinear filter-
ing theory coupled to a suitable model of pattern formation.
The results provide a needed link between field observations
and theoretical models of vegetation patterns, setting the stage
for improved data‐model assimilation for ecological fore-
casting [Clark et al., 2001]. The proposed approach is com-
plementary to field‐based work needed to assist with model
selection and to constrain parameter estimates. To provide a
tractable starting point, the biomass‐only phenomenological
model proposed by Lefever and Lejeune [1997, hereinafter
LL97] is employed as a case study. The model arises from the
sum of two kernels: one representing the spatial variation in
facilitation, and one representing the spatial variation in com-
petition between plants. The LL97 model offers (i) a tractable
parameter space, (ii) directly observable state variables (bio-
mass, P), (iii) a general formulation that is broadly consistent
with a range of proposed pattern forming mechanisms, and
(iv) predicts nondimensional biomass P 2 (0,1) thereby sim-
plifying the interpretation of vegetation biomass observations
from various remote sensing platforms.

2. Methods

2.1. Model and Modeled Data

[3] The parameter estimation can be simplified by applying
two assumptions: (i) the perennial vegetation pattern exists in
a pseudo‐steady condition, and (ii) parameters estimated
from 1D transects are representative of the full system. The
first assumption is supported by the slow rates of change of
vegetation patterns already reported in the literature [Barbier
et al., 2006; Deblauwe et al., 2011], and the second by
quantitative similarities between LL97 model predictions in
1 and 2 dimensions. With these assumptions, the LL97 model
simplifies to an ordinary differential equation in space:
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where m is a ratio of biomass growth to mortality rate; L is a
ratio of facilitation to competition; L is a ratio of facilitative
length scales to inhibiting length scales (approximately canopy
radius to root zone radius); P a ratio of biomass to the
potential peak biomass given local edaphic conditions, and
x the spatial coordinate normalized by the inhibition length
scale. All these parameters are nondimensional. The unsteady
LL97 model was solved with m = 1.01, L = 1.2, L = 0.1,
conditions that lie in the center of the model’s pattern‐forming
regime. Zero‐meanGaussian noise with standard deviation (s)
set to 1% of the peak biomass (Pmax) was added to the solution
to represent model process error. Three kinds of synthetic
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observations were crafted from the model output and used for
parameter estimation: (i) additive zero‐mean Gaussian error
with 0.01 < s < 1, (ii) multiplicative log‐normal errors with
mean 1 and 0.01 < s < 1, and (iii) coarse‐grained data formed
by applying a moving‐average window over 1% to 400% of
the pattern wavelength (w) before adding observation errors
(s = 0.01 and 0.1) to the coarse‐grained data.

2.2. Inference Techniques

[4] Twomethodswere used to estimate the non‐dimensional
parameters. The first method, referred to as the ‘search
algorithm’, solved equation (1) using factorial combinations
of parameters, and identified the parameter set that minimized
residuals between model predictions and observations. To
improve the numerical stability, the model expression was
linearized for three cases as:

@4P

@x4
¼ 8 1� �þ L� 1ð ÞP � P2

� �� 4
@2P

@x2
; P � P2 � L2

@4P

@x4
¼ 8 1� �þ L� 1ð ÞP � P2

� �
; P � P1 � L2

P ¼ 0; P < P1 � L2 ð2Þ

Equation (2) was numerically integrated using a 4th order
Runge‐Kutta method, and P1 = 2.5L2 and P2 = 9.5L2. Root
mean squared error (rmse) between this numerical integration
and the full LL97 solution was < 0.02. The rmse increased
monotonically as parameters varied from their ‘true’ values.
Confidence intervals around the minima were computed
using a Chi‐square test on the sum‐of‐square‐deviations
between observations and equation (2) predictions, allowing
95% confidence intervals to be independently determined for
L, m and L.
[5] The second estimation method was based on the

unscented Kalman filter (UKF), which provides unbiased and
efficient state estimates for highly nonlinear systems. The
UKF has been extensively reviewed by Julier and Uhlmann
[2004] and Van der Merwe and Wan [2001] and its details
are not repeated here. Briefly, it differs from standard Kalman
filtering approaches by approximating the nonlinear trans-
formation of the first and second order moments of the state
distribution via a set of ‘sigma points’ chosen to reproduce
the moments of the state distribution. To use the UKF for
parameter estimation, the parameters to be estimated were
included in the state vector and its nonlinear update:

_x1
_x2
_x3
_x4
_x5
_x6
_x7

2
666666666664

3
777777777775

¼ d

dx

P

dP=dx

d2P=dx2

d3P=dx3

L

�

L

2
666666666664

3
777777777775

¼

x2 þ �1

x3 þ �2

x4 þ �3

f x1; x3ð Þ þ �4

�5

�6

�7

2
666666666664

3
777777777775

ð3Þ

where f (x1, x3) = 8(1 − m +(L − 1)x1 − x1
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is the model process error. The sigma point generation
algorithm proposed by Van der Merwe and Wan [2001],
optimized for Gaussian model error, was used. Filtering the

series with additive error used a direct application of the
method outlined by Julier and Uhlmann [2004]. The multi-
plicative noise case used a log transformation to convert the
observation noise to additive Gaussian noise. The parameter
estimates made by the UKF depend on the initial conditions
for the parameters. The UKF was therefore applied to
equation (3) over an ensemble of 200 initial parameter esti-
mates. The parameter estimates converged over the first
50% of the biomass series, so the mean and standard devia-
tion of the estimates for the last half of the observed series
were used to compute the parameters. Additional details
about the implementation of the method are provided as
auxiliary material.1

[6] The two inference techniques were used to explore
three issues: (i) quality of parameter estimation as the signal‐
to‐noise ratio (Pmax/s) decreased; (ii) quality of parameter
estimation with decreasing observation resolution, and
(iii) ability of the filter to estimate consistent parameters from
a 1 km × 0.75 km aerial photograph of vegetation patterning.
The aerial photograph used was taken in an area to the north
of Parc W Niger, 12°56′09.80″N, 3°19′59.72″ E. Details of the
processing of the aerial photograph to generate parameters
for analysis are also provided as auxiliary material. The
observations were normalized by the peak absorbance in the
image, and biomass was assumed to scale linearly with this
normalized value (see auxiliary material). The spatial scaling
was provided by the 8m root zone extent measured in vegeta-
tion patterns in Parc W, which was assumed to provide a rea-
sonable estimate [Barbier et al., 2008].

3. Results

3.1. Effect of Decreasing Signal‐to‐Noise Ratio
and Spatial Resolution

[7] The performance of the UKF and the search algorithm
approaches in estimating the parameters used to generate the
synthetic data is shown in Figure 1 for a range of signal‐to‐
noise ratios for both mulitiplicative and additive noise. It is
evident that the UKF performed well for a wide range of
signal‐to‐noise ratios, and for both kinds of observation
errors. Confidence intervals on the predictions (omitted for
clarity) were small (<5%) for all signal‐to‐noise ratios here.
The L and m were estimated with greater reliability than L,
although in part this reflects the small value of L. By com-
parison, the search algorithm performed well for multiplica-
tive noise at high signal‐to‐noise ratios (>20), below which
the error in predicted L increased dramatically, exceeding
50% at a signal‐to‐noise ratio of 15. Predictions of L and m
remained reasonable for signal‐to‐noise ratios >20, below
which they became biased, erratic, and imprecise (confidence
intervals of ∼50%). The search algorithm performance with
additive noise was poor in all but the least noisy cases, and
again became biased, erratic and imprecise at signal‐to‐noise
ratios of <20. The analysis was repeated for contrasting
parameter choices, and produced similar results (not shown).
[8] The coarse‐grained model data ranged in resolution

from 0.01w to 4w. The UKF performed well when applied to
coarse grained datasets contaminated with multiplicative
noise, generating errors of less than 5% for m and L until the
averaging window approached w. The estimation of L was

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049182.
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sensitive to the coarse‐graining, with errors increasing as the
averaging window exceeded 0.1w. Results were comparable
for the clean and noisy datasets. The additive noise filter
performed worse for the noisy dataset than the clean dataset
at a given resolution. The sensitivity of the filter to coarse
graining was similar for the two datasets, with parameter
estimation becoming biased when the smoothing window
approached 0.25w. The results are shown in the auxiliary
material.

3.2. Estimation of Parameters From Aerial Photograph

[9] The normalized absorbance (biomass) data, parameter
estimates and an example of the LL97 model predictions
using the estimated parameters (assuming multiplicative
noise) are shown in Figure 2. The UKF output was consistent

across multiple transects, taken in multiple directions through
the patterned image, as evidenced by the relatively constrained
standard deviations of the parameter estimates: L = 1.70 ±
0.05, m = 0.108 ± 0.04 and L = 0.02 ± 0.02. The estimated
parameters lie within the pattern forming regime of the LL97
model (a necessary condition for their formation). However,
the parameters in this case lie close to the pattern forming
bifurcation so that the lower limit of the estimated value of m
lies in a region where homogeneous vegetation cover is stable.
The Parc W vegetation patterns are the southernmost occur-
rence of vegetation patterns in the Sahelian region [Barbier
et al., 2006], and since the site studied here is likely to be
somewhat drier and more impacted by grazing, these results
are consistent with the ecological context of the study site. In
contrast, repeating the analysis with the UKF optimized for

Figure 1. Performance of (top) the search algorithm and (bottom) the UKF for estimating the parameters (left) L, (middle)
m and (right) L, as a function of the signal‐to‐noise ratio in the observations (shown in log scale). Red circles indicate the
parameter estimates assuming additive noise, while blue squares indicate the estimates made with multiplicative noise. The
black line indicates the true parameter value. The UKF produced reasonable parameter estimates for signal‐to‐noise ratios
greater than ∼2, below which the estimates became biased. The search algorithm performed reasonably well for multiplicative
noise with signal‐to‐noise ratios greater than ∼4, below which predictions became erratic. Except on very clean datasets, the
search algorithm performed poorly for additive noise.

Figure 2. Parameter estimation from an aerial photograph of vegetation patterns in Niger. (a) Normalized biomass spatial
distribution, determined from the total image intensity in a Google Earth image. (b–d) Estimates of parameters L, m, and L
obtained from sampling multiple horizontal and vertical 1D transects from Figure 2a. Mean parameter estimates shown in
red. (e) LL97 1D model output with the mean parameter estimates from Figures 2b–2d, demonstrating that the estimated
parameters lie in the pattern forming regime.
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additive noise generated inconsistent and unrealistic estimates
of the LL97 parameters.

4. Discussion and Conclusions

[10] These results provide a proof of concept of the fea-
sibility of extracting quantitative information about small‐
scale ecosystem properties from observation of large‐scale
spatial biomass distributions via spatial patterning. Necessary
conditions for successful parameter estimation were resolu-
tions of better than 0.1w, and observation errors of less than
∼25% of Pmax, suggesting that high resolution imagery is
needed in such estimation exercises. The form of the vege-
tationmodel used was reflected in the quality of the parameter
estimates. For instance, L was the most poorly estimated
parameter in all cases. This can be attributed to two sources:
(i) direct observation of the effects of L is confined to cases
when P is small, and is therefore challenging to observe, and
(ii) the effects of L largely influence the biomass peaks by
determining the spatial gradients of P at the edges of vege-
tation patches. Observation of these gradients is sensitive to
small errors. The improved estimation for the multiplicative
noise case was partly due to this sensitivity because multi-
plicative noise reduces the absolute error at small biomass
values relative to additive noise. Multiplicative noise also
avoids the bias associated with truncating estimates of P < 0
(P < 0 arises when assuming additive noise for small P),
again improving the filter performance at small P and the
estimates of L. These factors contribute to the improved
precision and reliability of the estimates from the multipli-
cative filter applied to the aerial photograph. However, the
estimate L = 0.02 for the Parc W patterns suggests that the
length‐scale over which facilitative interactions occurs is on
the order of only 15 cm (40 cm at most given the error in L),
smaller than tree canopy radii. Whether this indicates a
systematic under‐estimation of L, or the possibility that
facilitative interactions are restricted to scales smaller than
the canopy radius, is unclear.
[11] Extending this approach from well‐studied sites like

Parc W to other locations is straightforward provided the
challenges associated with normalizing biomass and the
spatial terms in the LL97 model can be overcome. Biomass
normalization may benefit from coupling larger‐scale esti-
mates (e.g., MODIS imagery) with high resolution photog-
raphy to ensure that a reasonable estimation of the saturating
biomass condition (e.g., NDVI) can be made. Research to
evaluate the NDVI ‐ biomass relationships in patterned sites
would be valuable. Normalizing the space terms by the
inhibition lengthscale (root zone) may be challenging for
areas where root measurements are unavailable, although
literature estimates are available for many pattern forming
species. Alternatively, a phenomenological model has been
proposed in which length scales are normalized by the plant

canopy [Lefever et al., 2009]. Similar filtering methods can
also be applied to physically based models in which all
parameters are explicit. For instance, the UKF performedwell
in estimating the parameters of a coupled water ‐ biomass
model [Rietkerk et al., 2002] from synthetic data pro-
vided observations of soil moisture were incorporated in the
filter (not shown here). Obtaining such observations, both in
terms of a mean soil moisture estimate for the root zone or
an average soil moisture condition through time, however,
remains at the limits of contemporary remote sensing
technology.
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